al

SHAKEY THE ROBOT

@GN

H

Technical Note 323

Aprll 1984

Edited by: Niis J. Nlisson, Director

Artificial intelligence Center
Computer Science and Technology Division

nErnan

l | i Approved:
Donald L. Nietson, Acting Director
Computer Science and Technology Division

333 Ravenswood Ave. » Menlo Park, CA 94025
<4151 326-6200 « TWX: 910-373-2046 ® Telex: 334-486

International
NS 7 7

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED

APR 1984 2. REPORT TYPE 00-04-1984 to 00-04-1984
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Shakey the Robot

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 150
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CERTUM QUOD FACTUM

Giambattista Vieo — Italian philosopher and jurist (1668-17{4)

LIST OF ILLUSTRATIONS i i i e et iaan s
LIST OF TABLES i i it ittt e e aiaanns
ABSTRACT .. e e e e e e
CHAPTER ONE; Introductionc.icuineeentnnnunnas

CHAPTER TWO: The Robot Vehscele, The Computera,
and Other Hardware it s

CHAPTER THREE: Shakey's Model ofthe World
CHAPTER FOUR: The Low-Level Actionas
CHAPTER FIVE: The Intermediate-Level Actiona
CHAPTER SIX: Vigton Routtneat vrennnnnnnnnnn.
CHAPTER SEVEN: STRIPSttt it iaiianaiannn
CHAPTER EIGHT: Learning and Ezecuting Plans
CHAPTER NINE: Ezperiments With Shakey
ACKNOWLEDGMENTS i i it iiieica s
APPENDICES

A Mechnical Development o f the Automaton Vehiele
B Some Current Techniques For Scene Analysia

REFERENCES ... i ettt e e e

iii

vii

19

25

35

51

57

65 -

81

101

105

113

135

L e

ILLUSTRATIONS

AUTOMATON VEHICLEt ieiainnnn 10
AUTOMATON VEHICLE IN ITS ENVIRONMENT 11
AUTOMATON-SYSTEM BLOCK DIAGRAM 14
SRI ARTIFICIAL INTELLIGENCE GROUP

COMPUTER SYSTEM . .. eoeeiiaainaannnnns 17
EXAMPLE MODEL "+« .+t ottt i eeeiieaenenns 24
CONTROL STRUCTURE OF LOW-LEVEL ACTIVITIES . . 33
CONTROL STRUCTURE OF THE

INTERMEDIATE LEVEL ... \vviitnetiennannnenn. | 48
AN OBSTACLE CONFIGURATION FOR FINDPATH 50
SEARCH TREE FOR CONFIGURATION OF

FIGURE 8 .. eetuetneinnina e aaiiaanenes 50
TYPICALMACROPiiiiiniiaiainainnnnn. 67
MACROP WITH MARKED CLAUSES 70
MACROP AFTER EDITINGcevenaunnn.. 71
GENERALIZED PLAN FOR TWO-PUSH MACROP 74
MOP: A NESTED MACROPccouoennn.. 77
MAP OF SHAKEY'S EXPERIMENTAL ENVIRONMENT . . 83
MAP OF SHAKEY'S WORLD AFTER

COMPLETION OF THE FIRST TASK : 98
THREE CORRIDOR SCENESc..... 116
RESULTS OF MERGING HEURISTICS 117
ASIMPLE SCENEiuniiieninainaennnn. 124
A MORE COMPLICATED SCENE | 127

THE ANALYSISTREE 129

B-6
B-7

BASIC FLOWCHART FOR LANDMARK PROGRAM

LANDMARKS

1.2 Y - L B]

TABLES

PRIMITIVE PREDICATES FOR THE ROBOT'S

WORLD MODEL . . et e eee e e e e e eeaee e 23
LOW-LEVEL ACTIVITIES OF ROBOT* 32
SUBROUTINE GOTOADJROOM (ROOM1,DOOR,ROOM?2) 37
INTERMEDIATE LEVEL ACTIONScvvvnn.. 40
MARKOV TABLE FOR THE LOWEST-LEVEL

PUSHING ILA . o ee ettt et e e 47
AXIOM MODEL ..ottt 84
STRIPS OPERATORS ettt e eieee et e, 89
TRIANGLE TABLE FOR
MACROPI1(PAR3,PAR1,PAR2,PAR4,PARS PART,PARS) . . . 93
TRIANGLE TABLE FOR
MACROP2(PAR3,PAR1,PARS,PAR7,PARS PAR4,PAR?) . . . 08

CORRESPONDENCE BETWEEN BOUNDARY
SEGMENT CONFIGURATIONS AND

CHARACTERS USED IN PRINTOUT 118
REGIONS THAT ARE LEGAL NEIGHBORS 120
HYPOTHETICAL REGION SCORES 128

ABSTRACT

From 1966 through 1872, the Artificial Intelligence Center at SRI
conducted research on a mobile robot systermn nicknamed ‘“Shakey.”’
Endowed with a limited ability to perceive and model its environment,
Skakey could perform tasks that required planning, route-finding, and the
rearranging of simple objectsa. Although the Shakey project led to
numerous advances in Al technigues, many of which were reported in the
literature, much specific in formation that might be useful in current
robotica research appears only in a series of relatively inaccessible SRI
technical reports. Our purpose here, consegquently, ta to make this
material more readily available by extiracting and reprinting thoae
sections of the reports that seem particularly interesting, relevant and

tmportant,

CHAFTER ONE

Introduction

From 1966 through 1972, the Artificial Intelligence Center at SRI
conducted research on a mobile robot system nicknamed “Shakey.” This
regsearch wasg sponsored by the Advanced Research Projects Agency under
a succegsion of contracts with the Rome Air Development Center, the
National Aeronautics and Space Administration, and the Army Research
Office. Two complete versions of Shakey were developed. In 1968 we
completed our first integrated robot system: a mobile vehicle equipped
with a TV camera and other sengors—all radio-controlled by an SDS-940 .
computer. In 1871 we completed a more power ful robot system by making
substantial program improvements and by replacing the SDS-840
computer with a Digital Equipment Corporation PDP-10/PDP-15 facility.

Dramatic recent progress in reducing the size and cost of power ful
computer hardware makes the prospect of autonomous robots much more
realistic than it was fifteen years ago. There are several new robot
projects underway that might benefit from Shakey’s legacy. The Shakey
project led to several advances in Al techniques, many of which were
reported in the literature, but a great deal of specific in formation
nevertheless appears only in a series of relatively inaccessible SRI
technical feports [1-12]. Therefore, to make this material more readily
avatilable, we have decided to eztract and reprint here what seem to be the
most relevant and important sections of these reporta. Of particular
intereat are (1) the techniques used in Shakey’s action routines that
enabled flezible recovery from inappropriately ezecuted actions, (2) the
method of integrating perception with action, and (8) the techniques for
planning and ezecuting complez sequences of actions. (The reader who
needs additional detatla can obtain copies of the original reports from the
National Technical Information Service (NTIS). See the NTIS access

numbers in the references at the end of this report.)

3

This report will describe only the second of the two Shakey systems
because it was far more advanced than its predecessor. (A summary of
the first syatem appears in [5].) The material is reprinted in its original
form, but with minor changes to make figure, chapter, and citation
numbers conasistent. Whenever deemed advisable and helpful, the tezt s
supplemented by occasional explanatory comments in italica. Unless
otherwise attributed, any chapter or section references included in these

commentaries pertain to the present collection only.

We begin with an excerpt from the first report [1], issued in 15966.

Major Goals and Objectives of this Program

It is the objective of this program to develop concepts and techniques in artificial
intelligence enabling an automaton to function independently in realistic environments.
These concepts shall be demonstrated by means of a breadboard, mobile vehicle
containing visual, tactile, and acoustic sensors, signal processing and pattern-recognition
equipment, and computer programming. Primary goals shall be the solution of
incompletely specified problems (requiring creation of intermediate strategies and goals)

and improvement of performance with training experience.

Some of the ground rules guiding our research were established immediately. First, it was
decided that the basic goal of this project was to design an integrated system consisting of
a mobile vehicle under the real-time control and supervision of a powerful digital
computer. The-vehicle should be equipped with at least rudimentary manipulative
abilities, and with sensory and communication subsystems. Various automata have been
built which are controlled by relatively few, simple, onboard logic circuits, but the essence

of this project is real-time control by a full-scale, programmable, digital computer.

Second, we decided to minimize hardware complexities whenever possibie to allow us to
focus primary attention on the problem of directing the automaton’s actions and planning
by means of a hierarchy of computer programs. For this project the mechanical
engineering problems of building a robot’ with articulated limbs and delicate grasping
abilities are irrelevant. One can face very tough problems in artificial intelligence directly

in attempting to write computer programs to control even a very simple vehicle. It is for

this reason also that we shall make no attempts here to design highly miniaturized
computers that can fit into the ‘head” of an automaton. Technology will sooner or later
provide us with such small but powerful computers in any case; in the meantime, we shall
learn how to program their large and cumbersome ancestors to control an automaton

remotely via cable or radio link.

Third, we decided to conduct no extensive research on the subject of visual pattern
recognition in this project. This ground rule by no means should be taken as minimizing
the importance of the probiem of visual perception. On the contrary, it is probably one of
the most important problems to be faced in designing automata. But we felt that the
perceptual abilities conferred by employing presently existing pattern-recognition methods
were more than adequate to permit the use of a real environment sufficiently rich to tax
our skills in developing control programs for that environment. In the meantime, research

on mechanizing perception could and should continue independently.

Fourth, we decided that the environment of the automaton should be large in extent. Its
components may be simple in quality in the beginning, but there should be a non-trivial,
extensive environment that the automation is expected to deal with. This ground rule
forces us immediately to consider only methods for ¢ fficient internal representations of

the world.*

The eleventh report [11] gave a concise summary of the organization of |
the Shakey system which can also serve as an overview to the present

note:

The robot system is a hierarchical structure in which we shall identify five major levels.
Although some of these levels are much more clearly defined than others and some have
consiclerable substructure, the five levels described below constitute a useful division for
this exposition. Also, the effectiveness of the system is largely derived from the clear

specifications for these levels and their interconnections.

The bottom level of the system consists of the robot vehicie and its connection to the user
programs. This connection includes radio and microwave communication links, a PDP-15
peripheral computer and its software, and a communications channel, with its associated
software, between the PDP-15 and the PDP-10. This bottom level may be thought of as
defining the elementary physical capabilities of the system. |

*From [1f, pages I-2.

The robot vehicle is described in Chapter Two and Appendix A of the
present report, and the PDP-15/PDP-10 inter face is described in Appendix
G of [10].

The heart of the software that controls Shakey ia ita “model” of the
world it inhabits. This model is a global data structure that can be
accessed and modified by the other routines. It is described in Chapter
Three.

Continuing with the ezcerpt from [11]:

The second level consists of what we call Low-Level Actions, or “LLAs.”’ These are the
lowest-level robot control programs available to user programs in the LISP language, our
principal programming tool. The LLAs are programatic handles on the robot’s physical
capabilities such as “ROLL"” and “TILT.” They are described in detail in Chapter Four.

So that it can exhibit interesting behavior, our robot system has been equipped with a
library of Intermediate-Level Actions, or “'ILAs.” These third-level elements are
preprogrammed packages of LLAs, embedded in a Markov table framework with various
perception, control and error-correction features. (Markov formalizations are explained in
Chapter Five, Section B.) Each ILA represents built-in expertise in some significant
physical capability, such as “PUSH" or “GO TO." The ILAs might be thought of as
instinctive abilities of the robot, analogous to such built-in complex animal abilities as
“WALK" or “EAT.” Chapter Five contains a description of the present set of ILAs,
along with the conditions under which they are applicable and how they each can affect
the state of the world. |

The principal sensor of the perceptual system is the TV camera. Programs for processing
picture data have been restricted to a few special ‘‘vision' routines, that orient the robot
and detect and locate objects. These programs are incorporated into the system at either
the ILA or LIA level. The algorithms in these routines are described in Chapter Six and
Appendix B.

Above the [LAs we have the fourth level, which is concerned with planning the solutions
to problems. The basic planning mechanism is STRIPS, described in Chapter Seven.
STRIPS constructs sequences of ILAs needed to carry out specified tasks. Such a

sequence, along with its expected effects, can be represented by a triangular table called a

MACROP (“macro operation’). Chapter Eight describes how such MACROPs can be
zcncrated in generalized form, thereby enabling an interesting form of learning and plan

sclection to take place.

Finally, the fifth, or top, level of the system is the executive, the program that actually
invokes and monitors executions of the ILAs specified in a MACROP. The current
executive program, called PLANEX, is briefly described at the end of Chapter Eight.*

*From [11}, pages 8-4.

CHAFPTER TWO

The Robot Vehicle, The Computers, and Other Hardware

A. The Vehicle and its Environment

The robot vehicle itself is shown in Figures 1 and 2. It is propelled by two stepping
motors independently driving a wheel on either side of the vehicle. It carries a vidicon
television camera and optical range-finder in a movable “head.” Control logic on board
the vehicle routes commands from the computer to the appropriate action sites on the
vehicle. [n addition to the drive motors, there are motors to control the camera focus and
iris settings and the tilt angle of the head. Other computer commands arm or disarm
interrupt logic, control power switches and request readings of the status of various
rcgisters on the vehicle. Besides the television camera and range-finder sensors, several
“cat-whisker'’ touch-sensors are attached to the vehicle's perimeter. These touch sensors
enable the vehicle to know when it bumps into something. Commands from the computer
to the vehicle and information from the vehicle to the computer are sent over two special
radio links, one for narrow-band telemetering and one for transmission of the TV video

from the vehicle to the computer.*

More detailed :'n.forrf:aﬁon about the vehicle can be found in Appendiz A

at the end of the present report.

The initial environment of the Automaton was réal. but contrived. It has been sufficiently
simple to allow current visual capabilities to be useful to the Automaton, and sufficiently
complex to indicate the weaknesses of current methods and to suggest areas of lurther
research. Perhaps the most important result of our vision-research effort on the
Automaton project i3 an appreciation of the potential compiexity of the problem of vision
when the real world is the subject matter, and a strong notion that the first step we have

taken towards a general capability is very small indeed.

*From [2], page 1.

. ZRANGE ;
- FINDER'

. . .

~

ON-BOARD.

Figure 1: AUTOMATON VEHICLE*

*From [5], page 2.

10

Figure 2: AUTOMATON VEHICLE IN ITS ENVIRONMENT*

*From [5], page 8.

11

The current Automaton is restricted by its method of locomotion to move only on nearly
flat surfaces. Initially its travel was limited by the length of cable connecting it and the
computer. The addition of the radio links allow the Automaton to travel further from the

computer room.

The first visual subsystem was designed to specialize in the planar-surfaced environment
of our laboratory and office building. The objects in this environment are specially
constructed rectangular parallelepipeds and wedges. The use of only the regularly spaced
overhead [luorescent lights as well as light colored walls and floor allows us to essentially
eliminate shadows and to limit the illumination to a 2-1/2 to 1 range in the computer

roorm.

The surfaces of the objects used are uniformly coated with red, grey, or white paint.
Originally black was used to insure high contrast between adjacent surfaces. However,
the range-findcr relies on reflected light. Red replaced black because it is relatively dark
to the TV camera and returns enough light to the range-finder. Thus, not only are the
objects opaque, but also have non-specular surfaces. Furthermore no two-dimensional
markings were put on the object surfaces. The floor tile was chosen so as not to have any
detectable markings. The only two-dimensional marking purposely applied was a dark
wall moldinz at the Moor level. The floor has about the same reflectivity as the walls,

There were verticle molding strips on one wall which were specular.*
B. Illardware Associated with the Vehicle

An ezcerpt from [5] describes some of the interface hardware between the
vehicle and the SDS computer. Much of this hardware remained
unchanged when we substituted a PDP-10 computer for the SDS-940.

Figure 3 shows a block diagram of the hardware system. The system consists of a
stationary part interfacing with the SDS 940 computer and the mobile vehicle which is
remotely controlled from the fixed equipment via a full duplex radio link. (The data

communications interface was described in an Appendix of [4].)

Commands to the vehicle are transmitted in digital form preceded by a module address

referring to the module on the vehicle that is expected to act. Each module is equipped

*From 5], pages 19-20.

12

with its own register. The register holds bits specifying information on desired direction
of motion. speed, requested distance, and other special functions. When action is
requested, the action starts and continues until completed or interrupted by other control
functions in the system. End-of-action or other control interrupts are transmitted back to
the stationary cquipment in coded form, where they are decoded and sent as interrupts to
the computer. Interrupts of a similar nature are ORed together to limit the number of
iuterrupts. Status registers are therefore provided on the vehicle so that status can be

interrogated from the computer any time the source of the interrupt is in question.

Special registers for the sensors, such as the range finder, bumpers, etc., are available and
can be interrogate by a read operation in the same manner as reading from the module

register.

The hardware for the visual system uses the same interface to the computer. The power
for the TV camera and the special transmitter for the videodata is controlled from the

powcr-control register on the vehicle. The rest of the visual system is quite independent.

The TV camera consists of one control unit mounted on the platform of the vehicle and
one camecra head mounted on a pedestal in the center of the vehicle. The camera can be
turned x 180 degrees around a vertical centerline, and it can be titled +60 degrees and
-45 degrees around a horizontal axis located below and perpendicular to the optical axis of
the camera. The camera is equipped with a manually replaceable lens. The lens mounts
in 2 mechanism will two motors for control of iris and focus. The control of all degrees
of freedom of the camera and its lens system is accomplished by stepping motors. The
rotation of the camera around the vertical shaft is under control of a servo similar to that
used for the wheels of the vehicle. The control from the computer is in the form of LEFT
or RIGHT commands of a given number of steps. The camera has one left-rotational
terminal switch at +180 degrees rotation and one right-rotational terminal switch at -180
degrees rotation. When these switches close, the rotation in the direction in process is
interrupted. The switches also signal the emergency circuit, causing an interrupt signal at
the computer. Associated with the shaft rotation, there is also a pan distance counter.
The content of the counter can be transmitted to the computer. The tilt of the camera is
controlled by a stepping motor operated at a constant step rate. The motor reacts to a
TILT UP or TILT DOWN command for a given number of steps. The tilt mechanism has
limiting switches up and down. The limit switches stop the tilt and signal the interrupt

circuits in the computer. The content of the tilt counter can be transmitted to the

13

- - o
E..-.: E!.! Q'!_.g i
] Ry e 25S =
-E3 | x x
I
- -
=z¥| |s5:3 ==
o2 ==2 Ead -z .-
E=E e == Say S== T3z
== === FEE see -=1 === =22
3z3| |Ezz| |%3 g33| |[=32 =33
=25 =55 ==y
rl.'
it
=g $
=
== -
=E= —EE-
;i izzi [z 5 ¥
53 |gg| |o (PEEE [3g| |EE| .2 |Ee
== == R . = =
o PE - I oo - L T SRS S
= |° : 1 £z| | G| i
-) -
- |E% zx
E= 53 3=
- =a :g ==
- T - - = =
azZ= - - -3
H 1 -
==2m
=%
1
]
= g El = !55
= % =& - =z
3z < - 53 -
B—: s E‘-' E: ¥
- - - -]
22 |2 8 | IS
=;= - - —T
i_g o
- -
-
(e ——————— e ot s i e e e ——————————
]

Wit o— —

it
[{ 11NN
Mt a—=—

Figure 3: AUTOMATON-SYSTEM BLOCK DIAGRAM*

*From [5/, page $0.

14

L TR

compnter. A brake mechanism locks the camera in its tilt position when power is

removed from the motor.

Only one lens is presently used. Focus is controlled by one stepping motors and iris by
another. The rotation is limited by limit switches. The limit switches preset the counters

at maximum focus and minimum iris associated with the stepping motors.
The control fogic has an up-down counter for distance and direction.*
C. The Computer System

The Artificial Intelligence Group computer complex consists of the following parts:

s PDP-10 computer and peripherals
e PDP-15 computer and peripherals (including the robot)

e An interprocessor buffer to connect the two computers.

These arc interconnected as shown in Figure 4.

The PDP-10 system has 192K (K = 1024) words of 36-bit memory. 32K is DEC MD10
memory. The rest is Ampex RG10 memory, consisting of one 32K memory with interface
and one 128K memory interface and four modules of 32K each. All memory has four

ports. These are occupied by:

¢ PDP-1: central processor
e« DF10 data channel
e DBryant drum controller

o DA25C interface.

The Bryant drum is a high-speed autolift drum which has a 1.5-million-word capacity. It
is planned that it will be used for swapping and some system files. The drum controller

interfaces directly into the memory rather than going through a data channel.

*From [3], pages 29-32.

15

" The DF10 data channel is used to handle /O from two peripherals: the disk pack drives
and the TV A/D converter.

The interface between the disk pack drives and the DF10 data channel was built by

Interactive Data Systems, Inc.

The disk pack drives are manufactured by Century Data Systems and handle the 20-
surface disk packs. This means that each disk pack has a 5-million-word capacity. The
packs themselves are manufactured by Caelus Inc. The disk pack system is used as

secondary storage.

Currently, we are also using one disk pack drive as a swapping device for the time-sharing

system.

The TV A/D converter is an SRI-designed and -built device. It handles data from the
robot TV camera at a rate of one word every 1.5 microseconds. It is capable of processing
either 120X120 or 240X240 pictures with 32 levels of gray scale.

The DA25C is the PDP-10 side of the interprocessor buffer. It handles data at one 36-bit
word every 8 microseconds. We have programmed it such that the PDP-10 is always in

control and can interrupt any transmission in order to initiate one of its own.

The DA25D is the PDP-15 side of the interprocessor buffer. Each PDP-10 word is split
into two PDP-15 words (18 bits each). It also does the reverse operation. It operates on
the PDP-15 [/O bus as a single-cycle device; however, its internal logic uses three cycles

per word.

The PDP-15 has 12K of core memory and an /O processor. All devices are “daisy
chained” on the [/O bus. These include an Adage display, paper tape, DEC tape, A/D
converter, D/A converter, ARPA network IMP, and the SRI robot.

The Adage display provides a high-speed graphics capability. It will be refreshed [rom the
PDP-15 core. The display lists will be prepared in the PDP-10 and executed from the
PDP-15. Capabilities include incremental mode, print mode, dotted lines, and intensity

control.*

A special software interface was-also written for uae on the PDP-10

*From [9), pages 15-16.

16

DE-Eidy-v}

T2uusy) aogsazeadasjug

I |
i () _
|
[{127} g advieg AN BRI [-11: 7}
| e |
L nvavam —z 150H u:o.-h.._uz
150H 3100030 vy
L—- IIL W
— \ e pm——— o ——q
AV1dSI0 138Vl | 3aaza | | 3tama | a0 | —
19voY wodvaveo || | o] —. gning i wning | 150
| | S | —_——d 3 |
1 | -I‘-“-Ill |.||-||||— [Ty voui2q
| i |
104V savy lusxzrasom| 90120
ary via | 3nan i -
-.l.ll-.lll..- L
e e e — — e — — B s ol e — N . S ks ey - e
. e -
W 02014 oot
A .\, T uEL
wyanvo Kaany ViLNING
rosow yoin
“ 006
RUELY = OwINOD ax . s oA
0 0 ..!...n W | nsi0 TINNVHD | -
IVIHILNI nivey ai1>a o142
AUIINTTIL + MmA a3 s 008
10801 10s0y s
Ky
su goa
o [- g
1aw G1g kg 10W1H0D udany
.__Sﬂ..n_..ax._ SIMY Sivn _.I.IIL_ uvo ———q A YZoIsa wnea f—
nao INVAUSR ANV AW s ooa
_ ||||| J “ e
{ iy
_ “ el _.I........u“;.l...— vouLIY ol dx
s ur 1 oszvo 1 osev NEL -] cim» orvx
e (T
volDw | .“ no
$1- 04 ol-&4

Figure 4: SRI ARTIFICIAL INTELLIGENCE GROUP

COMPUTER SYSTEM*

17

*From [10f, page 50.

cemputer to allow FORTRAN (or FORTRAN-compatible MACRO)
subroutines and funciions to de run under the LISP operating syatem.
This tnter face is described in [13].

18

CHAFPTER THREE

Shakey’s Model of the World

A. The Robot’s World Model

As a result of our experience with the previous robot system (i.e., the one using the
$1058-940) and our desire to expand the robot’s experimental environment to include
several rooms with their connecting hallways, we have adopted new conventions for
representing the robot's model of the world. In particular, whereas the previous system
had the burden of maintaining two separate world models (i.e., a map-like grid model and
an axiom model), the new system uses a single model for all its operations (an axiom
tnodel): also, in the new system conventions have been established for representing doors,

wall faces, rooms, objects, and the robot’s status.

The model in the new system is a collection of predicate calculus statements stored as
prenexed clauses in an indexed data structure. The storage format allows the model to be
used without modification as the axiom set for STRIPS’ planning operations (Chapter

Seven) and for QA3.5's theorem-proving activities [14, 15].

Although the system allows any predicate calculus statement to be included in the model,
most of the raodel will consist of unit clauses (i.e., consisting of a single literal) as shown
in Table 1. Nonunit clauses typically occur in the model to represent disjunctions (e.g.,
box?2 13 eithgr in room K2 or room K4) and to state general properties of the world (e.g.,
for all locations locl and loe2 and for all objects obl, if obl is at location loc1 and locl is

not the same location as loe2, then obl is not at location loc2).

We have deflined for the model the following five classes of entities: doors, wall faces,
rooms, objects, and the robot. For each of these classes we have defined a set of
primitive predicates which are to be used to describe these entities in the model. Table 1
lists these primitive predicates and indicates how they will appear in the model. All
distances and locations are given in feet and all angles are given in degrees. These
quantities are measured with respect to a rectangular coordinate system oriented so that

all wall faces are parallel to one of the X-Y axes, The NAME predicate associated with

19

each entity allows a person to use names natural to him (e.g., halldoor, leftlace, K2090,

etc.) rather than the less-intuitive system-generated names {e.g., dl, f203, r4450, etc.).

Figure 5 shows a sample environment and a portion of the corresponding world model.
Yooms are defined as any rectangular area, and therefore, the hallway on the left is
modeled as a room. There is associated with each room a grid structure that indicates
which portions of the room's floor area have not yet been explored by the robot. During
route planning the grid is employed to help determine if a proposed path is known

blocked, known clear, or unknown.

Four wall faces are modeled in Figure 5. The FACELOC model entry for each face
indicates the face’s location on either the X or Y coordinate depending on the face’s
orientation. There is associated with each face a grid structure to indicate which portions
of the wall face have not yet been explored by the robot. This grid is used in searching

wall faces for doors and signs.

Two doors are modecled in Figure 5. The DOORLOC model entry for each door indicates
the locations of the door’s boundaries on either the X or Y coordinate, depending on the
orientation of the wall in which the door lies. Any opening between adjoining rooms is
modeled as a door, so that the complete model of the environment diagrammed in Figure
5 would have a door connecting reoms R1 and R3. This door coincides with the south

face of room R3 and will always have the status “‘open.”

The RADIUS and AT model entries for the object modeled in Figure 5 define a circle
circumscribing the object. These entries simplify the route-planning routines by allowing
each object to be considered circular in shape. Qur cusrent set of primitive predicates for
describing objeqts is purposely incomplete; we will add new predicates to the set as the

need for them arises in our experiments.

We do not wish to restrict the model to only statements containing primitive predicates.
The motivation for defining such a predicate class is to restrict the domain of model
entries that the robot action routines have responsibility for updating. That is, it is clear
that the action routine that moves the robot must update the rebot’s location in the
model, but what else should it have to update? The model may contain many other
entries whose validity depends on the robot’s previous location (e.g., a statement
indicating that the robot is next to some object), and the system must be able to
determine that these statements may no longer be valid after the robot’s location has

changed.
20

\We have responded to this prablem by assigning to the action routines {discussed in
Chiapters Four and Five) tae responsibility for updating only those model statements
which are unit clauses and contain a primitive predicate. All other statements in the
modlel will have associated with them the primitive predicate unit clauses on which their
validity depends. When such a nonprimitive statement is fetched from the model, a test
will be made to determine whether each of the primitive statements on which it depends is
still in the model; if not, then the nonprimitive statement is considered invalid and is
deleted from tbe model. This scheme ensures that new predicates can be easily added to

the system and that existing action routines produce valid medels when they are executed.
B. Model-Manipulating Functions

We have designed and programmed a set of LISP functions f_or interacting with the world
model. These functions are used both by the experimenter (as he delines and interrogates
the model) and by other routines in the system to modify the model. To the experimenter
at a teletype, these functions are accessible as a set of commands. A brief description of

these commands follows.

ASSERT This is the basic command for entering new axioms into the model. The
user follows the word ASSERT by either CUR or ALL to indicate
whether the entries are to be for the current model or are to be
considered part of all models. The system then prompts the user for
predicate calculus statements to be typed in using the QA3.5 expression
input language. After each statement is entered, the system responds
with “OK” and requests the next statement. To exit the ASSERT
mode the user types ““1."

FETCH This is the basic command for model queries. The user follows the word
FETCH by an atom form, and the system types out a list of all unit
clauses in the model that match the form. Each term in an atom form
is either a constant or a dollar sign. The dollar sign indicates an ‘'
don’t care” term and will match anything. The last term of an atom
form can also be the characters “‘$*" to indicate an arbitrary number of
“I don't care” terms. For example, the atom form ‘(AT ROBOT $*)"
will fetch the location of the robot, and the atom form “(INROOM $
R1)" will fetch a list of model entries indicating each of the objects in
room RI.

21

DELETE

REPLACE

This is the basic command for removing statements from the model.
The user follows the word DELETE by an atom form, and the system
deletes all unit clauses in the model that match the form. Atom forms
have the same syntax and semantics for the DELETE command as
described above for the FETCH command.

This is a hybrid command combining the operations of DELETE and
ASSERT. The user follows the word REPLACE by an atom form and
by a predicate calculus statement. The system first deletes all unit
clauses in the model matching the atom form and then enters the
statement into the model. This command is useful for operations such
as changing the robot’s position in the model, indicating in the model
that a previously closed door is now open, and so forth.*

*From [10f, pages 9-15.

22

PRIMITIVE PREDICATES FOR THE ROBOT'S WORLD MODEL

Primitive

Predicate Litersl Form Example Literal
FACES

type type(face" face"} type({1l face)

name name{ face name) name{ fl leftface)
faceloc faceloc(face number) faceloc({fl &.1)

grid grid(face grid) grid(fl gl)
boundsroom | boundaroom(face room direction) | boundsroom(fl rl east)
DOORS

type type{door'door™) type{dl door)

Dame pame{door name) name(dl halldoor)
doorlocs doorlocs(door number oumber) doorlocs{(dl 3,1 6.2)
joinsfaces | joinsfaces(door face face) joinefaces(dl f1 2)
joinsrooms | joinsrooms(door room room) joinsrcoms(dl rl r2)
doorstatus | doorstatus(door status) doorstatus(dl "open’)
ROOMS

type typel(room " room™) type(rl room)

name pamelroom name) name(rl K29090)

grid grid(room grid) grid(rl gl)

OBJECTS

type type(object'object™) type(ol object)

name name(object name) name(ol boxl)

at at(object number number at(ol 3.1 5.2)
inroom inroom(object room) inroom(ol rl)

shape shape(object shgpe) shape(ol wedge)
radius radius(object number) redius(ol 3.1)

ROBOT

type type('robot""robot™) type(robot robot)
name name({ " robot' name) name(robot shakey)
at at{"robot” oumber number) at({robot 4.1 7,2)
theta theta("robot” number) theta(robot 90.1)
tilt ti1t("robot" number) tilt(robot 15.,2)

pan pan("robot' number) pan(robot 45.3)
whiskers whiskers("robot"integer) whiskersa{robot 5)
iris iris("robot" integer) iris(robot 1)
override override(''robot"integer) override(robot 0)
range range(robot' number) range(robot 30.4)
tvmode tvmode({ " 'robot" integer) tveode(robot 0)
focus focus(" robot' number) focus(robot 30.7)

*From [10}, Page 11.

MODEL*

23

Table 1: .PRIMITIVE PREDICATES FOR THE ROBOT'S WORLD

r-£c68-vl

oL 51 DOl q
]
14
g
10804
G (1]}
' p
b 51
4]
£’
O o
10
tp
14
ts]
Eiri ot

(1988 1 pjjuiconpunog
18 rnpibd

(S'r F))20I8

{ENe ppiawey

{s2n} pjjedAy

(1198 Z1 EjjtuO0ISpUND]
(98 £Hpl8

(0'S EJ)201909}

(Z1pa ENSum

(sas} g))adhy

{e8 gnpab
{tisy Eljwwey
{woos gipedAy

(06 10qoIjEIRYyl
{ro) £'L 100010
{Am{Sys 10GOI)MUTY
{10qoJ J0qosjadAl

10804

{pao)2 Zp|snieitioop
iz? €1 1pjuioosuIo]

(€} ¥} Zppradepuiol

[0Sz 9'ZT TP)sIoloop
{1oopIIrYy ZPjRey
icop Zpjedh

(4o 1 Z)woorspuncy
g8 Z)pub

19'S4 ZHoorRIYy

P AT A L

(son) ZHedA)

(zd Zijpb
(a31))0 Tipmuey
{woos Zijedhy

{S'L 1o)snIpw)
{renbumical ojsdeys
(Z} L0}u00Iu)

oz L'rL Johe
{x0oQ (0)owsu
{12eiqo LO)8dAl

§133ra0

(usdr | p)snIeIIoOp
(z1 11 1p)mwoosuto]
{Z) 1) 1pjredejruic|
{S'ZL 0'0L (PPI201200P
{100pa3)yj0 | P)aurtl
tioop Lp)adA

$HO0O

{ys10ou }1 | jpuoOspUNOY
(¥B L)}

0°S1 4 ji701208;

{1y L)) Ruu

(s29) y))edla

s30v4

(e yiprd
{wooiuimuy J)owny
{woos pjedAl

sWN00Y

Figure 5: EXAMPLE MODEL*

*From [10f, page 13.

24

CHAPTER FOUR

The Low-Level Actiona

A. Introduction

The low-level actions, or “LLAs,"” define the interface between major robot software
packages and the bottom, hardware-oriented level of the system. The intermediate-level
actions {ILAs), to be described in Chapter Five, control the operation of these LLAs. The
I.LLAs, in turn, communicate with the PDP-15 computer and the robot vehicle according

to the protocol described in Appendix G of |9].

In this section we shall describe the upper face of the LLAs, i.e., the face presented to

higher-level programs.

Since the robot moves very slowly, we have taken great pains to permit the user to view
the robot as behaving asynchronously to as great an extent as appropriate. Thus, the
uscr must take cognizance of this asynchrony by confirming the completion of “‘settling”
on any robot activity before doing anything that assumes that activity to have been
successful. This low-level software package provides the necessary interlocking in the
following manner. Communications between the user and the robot are separated into
two unidirectional channels: orders from the user to the robot are handled by calls on
LLAs (i.e., the functions in this package); the current state of the robot's world is
refllected in the robot’s world mddel. Now, the functions by which the user can access
these part.ic'ular entries in the robot's world model have special provisions to ensure that
an activity has settled before granting access to any part of the model which that activity
might affect. For example, one might move the robot to a given location by first turning
it to face the target spot and then rolling it straight forward by the required distance.
One could conceivably confirm the initial turn (by interrogating the proper part of the
model) before rolling ahead. The model-access function will then delay until the turn has
scttied before reporting the bearing of the robot. On the other hand, the user will not be
delayed for completion of the roil ustil he interrogates the position of the robot. Thus we
have synchronization (between the user and the robot) whenever we need it but not

otherwise.

25

This sort of synchronization is effected in another circumstance having to do with
interlocks between activities. In particular, each activity has associated with it certain
conflicting activities. (For example, one cannot take a TV picture while the robot's head
is panning.) A set of initiation functions automatically take cognizance of all possible
conflicts: each ensures that all potentially conflicting activities are settled before
initiating its own activity. I'or the purpose of programming actual use of the robot,
however, one should note that settling of an activity does not necessarily mean its
successful completion. For example, a roll can terminate by the robot unexpectedly
bumping into some obstacle—this will “‘settle” the roll, but the robot cannot be assumed

to have attained its destination.
B. Measurement and Control

Before procceding further, we shall define the precise robot capabilities that the LLAs
control. Shakey can move about the floor by turning his body and by rolling straight
forward or backward, and he can pan and tilt his head. He can take pictures and range-
finder readings, and he can adjust the focus and iris states of the TV camera's lens.
Finally, he can set some global parameters both for taking TV pictures and for rolling or
turning. These ten activities will be more fully explained below. First we shall describe

the measurement conventions in Shakey's environment.

Angles are measured in degrees, and we will call the principal value of an angle that value
between -180° and +180°. The bearing of the robot is a horizontal angle referred to the
positive direction of the global y-axis; thus the robot is parallel to the x-axis in the
negative sense when its bearing is 80°. The pan angle of the robot's head is a horizontal
angle referred to the robot’s bearing, and the tilt angle of the robot’s head is a vertical
angle measured from the horizontal plane. Thus, when the robot has its pan angle at zero
and the tilt angle at-45°, the range-finder and TV camera are pointed at the floor right

before its very wheels.

We turn now to optical values. The iris of the TV camera is set in exposure value units
(EVs), whick have a logarithmic relation to f-numbers: increasing the EV number by one
doubles the amount of light arriving at the inner regions of the TV camera. Focus values
and range-finder readings are distances in feet from the intersection of the axes about
which the robot's head tilts and pans. That point in turn is about 4 feet 1-1/2 inches
above the floor and 9 inches forward of the axis about which the robot turns, when the

robot is standing (or sitting or whatever it does) on a level {lat floor.

26

Haviag covered the numeric quantities in the robot’s world, we have but a few other items
to discuss. Pcrhaps the simplest of these to describe is a TV picture: it resides on a disk
file in FORTRAN binary format. Now TV pictures are digitized in square arrays of
picture clements; the size of the array is constant, but one can select two coarsenesses:

120 or 240 picture elements on a side. One can, however, alter the confliguration of the
array for the sake of special stereo optics. These two options are combined into one

number called the tvmode, as follows:

“tvmode: 0 means 120 X 120 nonstereo
“tvmode’' 1 means 120 X 120 stereo
“tvmode'' 2 means 240 X 240 nonstereo

“tvymode' 3 means 240 X 240 stereo.

To explain the last two quantities of this section, we must first explain the two main
tactile sensors of the robot and how they interact with the roll and turn activities. The
tactile sensors are seven catwhiskers and a pushbar; each catwhisker can signal
engagement with an obstacle, and the pushbar can signal each of two levels of pressure:
mere engagement and hard contact. All nine of these conditions are reflected in a
quantity called the whiskerword; to a first approximation each of these conditions has its

own bit in the whiskerword, whose format is shown in the following table:

Bit_No. Octal Code Meaning of 1"
21 040000 Pushbar is engaged and ready to push.
22 010000 Left front whisker is engaged.
25 002000 Front horizontal whisker is engaged.
26 001000 Right front whisker is engaged.
28 000200 Right rear whisker is engaged.
29 000100 Encountered immovable object and backed off.
3 000040 Rear whisker is engaged.
33 000004 Left rear whisker is engaged.
35 000001 Front vertical whisker is engaged.

The robot has a couple of motor reflexes pertinent to this discussion: it will stop moving

whenever the pushbar becomes disengaged, and it will not move while a catwhisker is

27

engaged. llowever, these two reflexes can be overridden selectively; the corresponding
orders are sent to the PDP-15 by means of the override activity and the override code

word, which has the following significance:

Code Word Pushbar Catwhisker
0 Enabled Enabled
1 Enabled Overridden
2 Overridden Enabled
3 Overridden Overridden

C. The LLA Portion of Shakey’s Model

We will now enumerate and define the 17 predicates by which the robot’s lowest-level

state is represented in the axiomatic world model. They are:

Atom in Axiomatic Model Alfected By
(AT ROBOT xfeet yfeet) ROLL
(DAT ROBOT dxfeet dyfeet} ROLL
(THETA ROBOT degreesleftofy) TURN
{DTHETA ROBOT dthetadegrees) TURN
(WHISKERS ROBOT whiskerword) ROLL, TURN
(OVRID ROBOT overrides) ' OVRID
(TILT ROBOT degreesup) TILT
(DTILT ROBOT ddegreesup) TILT
(PAN ROBOT degreesleft) PAN
(DPAN ROBOT ddegreesleft} PAN
(IRIS ROBOT evs) IRIS
(DIRIS ROBOT devs) IRIS
(FOCUS ROBOT feet) FOCUS
(DFOCUS ROBOT dfeet) FOCUS
(RANGE ROBOT feet) RANGE
(TVMODE ROBOT tvmode) TVMODE
{(PICTURESTAKEN ROBOT <picturestaken) SHOOT

28

The two predicates AT and THETA give the position and bearing of the robot itself in
the global coordinate system; the statistical uncertainties are given by the predicates DAT
and DTIIETA, which are separated from AT and THETA to facilitate planning. The
state of the whiskerword is updated whenever a ROLL or TURN settles, and the OVRID

predicate reflects the state of the overrides in the robot.

The TILT and PAN predicates refer to the direction the robot's head is pointed. DTILT
and DPAN cive corresponding error estimates. All three angles (tilt angle, pan angle, and
heading THETA) are stored as their principal values. RANGE gives the value resulting
from the most recent range-finder reading. The PICTURESTAKEN predicate, which we
will describe more fully in our discussion of the SHOOT activities, gives the approximate
number of pictures taken to date. The meanings of the rest of the predicates should be

clear from the previous discussion.
D. The LLAs

The predicates are the means by which the robot tells the user about its state; the LLAs
provide the means by which the user tells the robot to alter its state. One should
understand that this clean division is largely just formal; in practice an interrogation of a
predicate is intercepted by a function that ensures settling of any relevant robot activities
before proceeding to the actual access. Also, the initiation of an action does not guarantee
its completion; actions may terminate for a variety of reasons, such as engagement of [imit
switches or malfunctions in the telemetry link. The state of the system after an action

may be determined by investigating the model.

The following functions initiate fundamental low-level activities (whenever numeric
parameters are used, negative numbers are permissible and mean motion in the direction

opposite to that indicated):

TILT degreesup tilts the robot's head upward by "‘degreesup™ degrees. The motion

can be prematurely terminated by a limit switch.

PAN degreesleft pans the robot's head by '‘degreesleft” degrees to the left or far

enough to activate a limit switch.

FOCUS feetout the TV camera’is initially focused on a plane removed by some focal
distance from the center of the head’s gimbals; this function increases that distance by

“feetout’’ feet. Of course the range of focal distances is limited by limit switches.

29

IRIS evs opens the robot's iris (on the TV camera) by “‘evs” EVs. Thus if “‘evs’ has
the value 1, this form will double the amount of light getting into the TV camera. There

are limits for this activity too.
OVRID overrides set the overrides as specified by the “overrides” code work.
TVMODE tvmode sets the TV mode as specified by the “tvmode’ code word.

RANGE reads the robot’s range-finder; this automatically includes turning on the

range-finder and waiting for it to warm up.

SHOOT puts a TV picture onto the disk file “TV.DAT.” The picture is taken
according to the current TV mode. Assuming correct operation of hardware and
software, a subsequent examination of the PICTURESTAKEN atom (in the world model)
wiil yield a positive integer giving the number of current pictures in a series (1, 2, 3,...)
begun when the robot system was loaded or initialized. In the event of an unrecovered
system malfunction (e.g., transmission error), the value stored with PICTURESTAKEN

will be the negative of the serial number of the Jast successfully taken picture.

ROLL feet tells the robot to roll forward by "“feet" feet. This activity has three
normal ways of prematurely terminating: the robot can come into contact with an
obstacle, engaging a catwhisker; it can lose contact with an object it is pushing,
disengaging the pushbar; or it can encounter an immovable object, causing the pushbar to
come on hard. The first two conditions cause the robot to stop by reflex actions that can
be overridden; the last causes the robot to attempt to free itself using more complex
evasive actions in a reflex that cannot be overridden. When the robot encounters an
immovable object, it will not only stop, but it will back away from it by some distance,
currently a constant 6 inches. (Of course, the information in the model will be correctly
maintained.) The whiskerword in the model is updated at the end of a ROLL or TURN;
it contains the description of the current state if the catwhiskers and pushbar are
returned from the robot, but it has another bit for immovable objects—this bit showing
the history of an event rather than showing a current state. This bit is set oniy when the

whiskerword is updated the first time after hard contact.

TURN degreesleft tells the robot t6 turn to the left by ‘‘degreesleft’ degrees.
Otherwise the above description of the ROLL activity applies excepting only the way
immovable objects are evaded. In this case, the robot turns back; currently it turns back

to its initial heading.

30

The functions discussed so far that initiate motions have been incremental in form if not
in essence. llowever, even this level of robot software has a memory of the various
aspects of the robot’s position in the axiomatic model so dutifully maintained by the
settling functions. Capitalizing on this circumstance, we have also provided some
functions to initiate motions to a given goal (rather than by a given amount). Although
these functions are formally and conceptually outside the lowest LISP level of robot
software, they have sufficiently simple internal structure that it is convenient to describe
them here rather than in the next (ILA) chapter. With one exception we cxpect their

meanings to be self-evident. These additional initiation functions are:

(TILTO degreesup)
(PANTO degreesleft)
(FOCUSTO feet)

{IRISTO evs)

(ROLLTO xfeet yfeet)
(TURNTO degreeslefttofy).

The exception is ROLLTO: it must first turn the robot to point toward its goal, so it
must do {and does) more than simple calling the corresponding incremental function with

the difference between the desired and current position.
E. Summary

Table 2 is a summary of Shakey's low-level activities. Figure 8 sketches how these

activities fit into the overall system control structure.*

*From [11], pages 25-83.

31

*K1141100 NuUnL ay1 sajoas QLTION
L3

SHANS 1 MM
‘yoaa’ vianL

v1aHLa' viaL

SUANSTHM ' Lva‘ Ly

VIINLa‘ viaus' Lva’ iy

JJOo paydeq-12afqo ajqeaomuy
paddojs-123afqo doap
paoddoys-dung

paxoudy-dunq

Tioy* Joons
'aruAo IoNvY NunL

(110192218ap QLNHAYL)

(1721822039D NUNL)

L (12274 1291% OLTI0H)

(1923 TIOH)

8no04° S181° NVd ETIL

RANVISAHALDLL | NAMVISAUNLOId ‘Jaomal - UL TI0N 100MAL - (LO0IIS)
ADNVY - -— Rvd‘ 1111 1108’ Mund - (3DNvH)
_
Jdomal - - loons - (opoua) JAOMAL)
FaIyy3A0 - - TION* NENL - (sapj110a0 Q1HAD)
|
110i] pasola
sno04a‘ SIMI sIdla‘sIyl 11911 uado 100HS (542 OLSIHI) (sad 51H1)
|
11aiy axejy
sn203a' snood SNo0JIq° snoo4 1Tut] Jeeu LOONS (3n03337 OLSNDOA) (1n0132] SMOOA)
(,201=) 17107 Iy3y2
HVda ' Nvd Nvdd'Rvd (911) 1= 301 100Ng 'IONVH (1791820233p OLNVd) | (3jo1802130p NVd)
(.Sk=-) 11D} xomOY
1111a111L 11ia' 1ty (,SC) 11m1 xaddn LOONE " DRV (dnseasdop OL1IL) (dnsasadap 111L)

topoN oy sind

1apop wWoa] BPOIN

#uoljipuo) Huyivuimaoa]

(J128+) BIDTEJUOD

aynjosqy

Axemypad

10804 40 SATLIATIOV TIATT-MOT

xxC 01921

SUOFIIUNG UCTITYITU]

Table 2: LOW-LEVEL ACTIVITIES OF ROBOT**

**From [11f, page 34.

32

{NTEAMEDIATE-LEVEL ACTIONS

FDCUSTO | 1AISTO

ADLLTD TURNTOD PANTO TILTD

H/\L/ ¢/¢/$ ' v\i\«
OVRID ROLL TURN g._ALH TILT TVMODE SHOOT RANGE FOCUS IRIS
l Y v) Y
- N A AND HARDWARE
ROTTOM LEVEL: MACHINE LANGUAGE TA8973-8

Figure 6: CONTROL STRUCTURE OF LOW-LEVEL ACTIVITIES*

*From [11], page 35.

CHAFTER FIVE

The Intermediate-Level Actitons

The intermediate-level actions (ILAs) are deacribed in excerpts from two
reports {10 and 11]. Each excerpt isa more-or-less self contained (and thus
some redundant material is reprinted), but both should be read for a

complete picture. The first excerpt discusses early plans for the ILAs:
A. Introduction

As with most programming tasks, the problem of programming robot actions is simplified
when it is done in terms of well-defined subroutines. At the lowest level it is natural to
define routines that have a direct correspondence with low-level robot actions—routines
for rolling, turning, panning, taking a range reading, taking a television picture, and so
forth. However, these routines are too primitive for high-level problem solving. Here it is
desirable to assume the existence of programs that can carry out tasks such as going to a
specified place or pushing an object from one place to another. These intermediate-level
actions (ILAs) may possess some limited problem-solving capacity, such as the ability to
plan routes and recover from certain errors, but the ILAs are basically specialized
subroutines. None of these routines has as yet been written. However, considerable
thought has been devoted to their design, and this section describes our plans for a set of

ILAs that are suitable for use with the STRIPS problem-solving system.

Perhaps the most difficult problem that confronts the designer of ILAs is the problem of
detecting and recovering from errors. Sometimes errors are detected automatically, as
when an interrupt from a touch sensor indicates the presence of an unexpected obstacle.
Other times it is necessary to make explicit checks, such as checking to be sure that a
door is open before moving through it. When an error is detected, the problem of
recovery arises. This problem can be very difficult, and is one aspect that distinguishes

work in robotry from other work in artificial intelligence.

It is natural to think of an intermediate-level action as a composition of somewhat lower-

level actions, which in turn are compositions of lower-level actions. While this

35

bicrarchical organization possesses many advantages (and it is in fact the organization
that we use), it is not ideally suited for error recovery. Errors are made most [requently
at low levels by routines that are too primitive to cope with them. An error message may
have to be passed up through several levels of routines before reaching one possessing
sufficient knowledge of both the world and the goal to take corrective action. If any
routine can fail in several ways, this presents the highest-ievel routine with a bewildering
variety of error messages to analyze, and requires explicit coding for a large number of

contingencies.

To circumvent this problem, we have chosen to have the subroutines communicate
through the model. With a few special exceptions, neither answers nor error messages are
explicitly returned by subroutines. Instead, each routine uses the information it gains to
update the model. It is the responsibility of the calling routine to check the model to be
sure that conditions are correct before taking the next step in a sequence of actions.
Detection of an error causes returns through the sequence of calling programs until the
routine that is prepared to handle that kind of error is reached. In the following sections

we describe in more detail the formal mechanism by which this is done.

B. The Markov Algorithm Formalization

1. General Considerations

The formal structure of each ILA routine is basically that of a Markov algorithm.* Each
routine is a sequence of statements. Each statement consists of a statement label, a
predicate, an action, and a control label. When a routine is called, the predicates are
evaluated in sequence until one is found that is satisfied by the current model. Then the
corresponding action is executed. The control label indicates a transfer of control, either

to another labeled statement or to the calling routine.

Table 3 gives a specific example of an ILA coded in this form. This routine, gotoadjroom
{rooml, door, room2), is intended to move the robot from rooml to room?2 through the
specified door. The first test made is a check to be sure that the robot is in room1. If it
is not, an error has occurred somewhere: Since this routine is not prepared to handle that
kind of error, no action is taken, and control is returned to the calling routine. The

subroutine return is indicated by the R’ in the control field.

*It also bears a close resemblance to Floyd-Evans productions.

36

Under normal circumstances, the first two predicates will be false. The third predicate is
always true, and the corresponding action sets the value of a local variable ‘s to give the
status of the door. The function '‘doorstatus’ computes this from the model, and
evaluates to either OPEN, CLOSED, or UNKNOWN. Rather than tracing through all of
the possibilities, let us consider a normal case in which the door is open but the robot is
neither in front of nor near it. It this case, the action taken is the last one,
navto(nearpoint{rooml,door)). Here the function “‘pearpoint” computes a goal location
near the door. The function *‘navto' is another JLA that plans a route to the goal point
and eventually executes a series of turns and rolls to get the robot to that goal. Of
course, unexpected problems may prevent the robot from reaching that goal.
Nevertheless, whether navto succeeds or fails, when it returns to gotoadjroom the next
predicate checked will be that of statement 4. If navto succeeds and the robot is actually
in front of the door, the bumblethru routine will be called to get the robot into room2. If
navto had failed and the robot is not even near the door, navto will be tried again. .
Clearly, this exposes the danger of being trapped in fruitiess infinite loops. We shall

describe some simple ways of circumventing this problem shortly.

SUBROUTINE GOTOADJROOM(ROOML ,DOOR, ROOM2)

Label Predicate Action Control
1 |~ in{rooml) R
2 in{room2) R
3 T setq(s,doorstatus{door)) 4
4 ;.nfrontof(door) Meg(s,0PEN) |bumblethru(rooml, door, room2) 2
near{door) Aeq{s, OPEN) align(rooml, door, room2) 4
near{door) Aeq(s,UNKNOWN) |doorpic{(door) 3
eq(s,CLOSED) R
T navto (nearpt(rooml, door)) 4

Table 3: SUBROUTINE GOTOADJROOM (ROOM1,DOOR,ROOM2)

37

2. Predicates and Actions

The predicates used in the ILAs have the responsibility of seeing that preconditions for an
action are satisfied. In general, the evaluation of predicates is based on information
contained in the model. If this information is incorrect, the resuiting action will usually
be inappropriate. However, the act of taking such an action will frequently expose errors
in the modcl. When the model is updated (which typically occurs after bumping into an
object or analyzing a picture), the values of predicates can and do change. Thus, the
values of the predicates will depend on the way the execution of the ILA proceeds, and

will steer the routine into {hopefully) appropriate actions when errors are encountered.

The actions can be any executable program. The most common actions are to compute
the values of local variables, update the model, call picture-taking routines that update
the model, or call other ILAs. Only the first of these causes any answers to be returned
directly to tbe calling program. This constraint of communicating through the model
occasionally leads to computational inefficiencies. For example, the very computation
used by one routine to determine that it has completed its job successfully may be
repeated by the calling routine to be sure that the job has been done. While some of
these inefficiencies could be eliminated with modest effort, they appear to be of minor
importance compared to the value of having a straightforward solution to the problem of

error recovery.

3. Loop Suppression

We mentioned earlier that the failure of a lower-level ILA might result in no changes in
the model that are detected by the calling ILA. In this case, one can become trapped in
an infinite loop. There are a number of ways to circumvent this problem. Perhaps the
most satisfying way would be to have a monitor program that is aware of the complete
state of the system, and that could determine whether or not the actions being taken are

bringing the robot closer to the goal.

An alternative would be to have each ILA keep a record of whether or not its actions are

leading toward the solution of its problem.

The simplest kind of record for an ILA to keep is a count of the number of times it has

taken each action. In many cases, if an action has been taken once or twice before, and if

38

the predicates are calling for it to be taken again, then the ILA can assume that no
progress is being made and rcturn control to the calling program. This strategy can be
improved by computing a limit on the number of allowed repetitions, and making this
limit depend on the task. For example, if the action is to take the next step in a plan, the
limit should obviously be related to the number of steps in the original plan. Both of
these strategies can be criticized on the grounds that they are indirect and possibly very
poor measures of the progress being made. However, they constitute a {requently

cffective, simple heuristic, and wiil be used in our initial implementation of the 1LAs.

4. Status and Implementation

As mentioned earlier, none of the ILAs has been implemented to date. However, some 15
have been sufficiently well defined to allow coding to begin. These are listed in Table 4
together with the ILAs that they call. The specification of the ILAs has also led to the
specification of a number of specialized planning and information-gathering routines. The
planning routines include programs {or planning pushing sequences, tours from room to
room, and trips within a single room. These will be developed along the lines of the
navigiation routines that were one of our earliest efforts on this project. The information-
guthering routines are primarily special-purpose programs for processing television
pictures. For example, PICLOC is a special-purpose routine that uses landmarks to
update the location of the robot, and CLEARPATH analyzes a picture to see whether or
not the path to the goal is clear. These routines are described in Chapter Six and

Appendix B.

Qume aspect of implementing the ILAs that has not yet been resolved concerns whether the
ILAs should be written as ordinary LISP programs, or should be kept in tabular form as
data for an interpret.cr. It 1s quite easy to go from a representation such as that in Table
3 to a LISP program realization; the basic structure is merely a COND within a PROG.
llowever, the use of an interpreter would simplify the implementation of the loop
suppressor, nnd would aiso simplify monitoring and the incorporation of diagnostic
messages. In addition, the same program that interprets the ILAs might be used to
interpret the plans produced by STRIPS; if we can make these structures identical, the
same cxecutive program will be usable for both. Uniformity in program structure is also

important for the plan generalization ideas (to be discussed in Chapter Eight).*

*From [10], pages 25-32.

39

dunq yeujwial v §32adxa 3Byl SuyINOI J1OX DYEUYH 17108 ' +XOVErTTON dWNETION

sdunq ou s32adxa j3wyy sujinoa [jox syveg *TTOM 171104

sdunq pajoadxaun o3 spuodsay TTIOH ‘«XOVETION Z17104

sdung ou s33adx2 !3ufINOI uaN} oygug =NUAL T NUAL

sdunq pajoadxaun o3 spuodsay THUAL ‘+XOVEruNlL ZNUNL

1203 pIEMO} 30qOX HIU3TIQ ZNUAL ‘+VIFHLO1d LN10d

dyx3 auyy-iydyeiys afduyis sajnoaxy 27704 ‘INIOd ‘»D0101d 010D

512afqo umoujuUn 03 AP BIOLID WOIJ SIIA003Y 010D ‘»H0LDALIAGOId ‘«HIVAUVIIO 10100

wood auc uyyym dyxy v aynoaxa pus ueld ue) 10100 ‘«AHNUNOCNVId OLAVN

sfesto0op ydnoayy Bujo3d 107 paroyyul NYHITTIAANE ‘OLAVN ‘NDI'TV ‘»DI4H00Q | HOOHFAVOLOD

8, HOOH[GVOLOD JO 837138 8 33Ndax3 pue usyd ued WOCHLGVOLOD ‘+UNOINVId HWOOHO.LOD

auy3noI 03-03 19437 3182udTH OIAVN ‘WOOMO01OD 01149

yaed 18272 sawnsew !aujjinox ysnd osyseg *T104 THsnd

330 8dy1s paysnd Buyaq 30afqo Jy H93UD | THSNd ‘AWNATION ‘OLAVN ‘00180 ‘»00101d ZHSNd

5,ZHSNd JO 531198 ¥ 83N3axd puw usid um) ZHSNd * +JAOWEONVTd m:m:.m
s3UBUWO D P2118D B3uy3Noy V11

‘SANILNOY FAILIKIHd SV GAMATA JYV SASIHIALSY A4 ATAHVH SANILAOY

"SNOIIOV T3AT1 ALYVIGINUALNI

INTERMEDIATE LEVEL ACTIONS*

Table 4

*From [10f, page 81.

40

The second ezcerpt describes the ILAs as they were implemented:

A. Introduction

The Intermediate-Level Actions (ILAs) are the action routines associated with the STRIPS
operators (see Chapter Seven). Here we distinguish “action routines™ from ‘‘operators”
on the following basis: operators are used for planning, and the corresponding action
routines are invoked to actually move the robot. The ILAs are written in a language we
call Markov because of its resemblance to Markov algorithms. There is a large body of
auxiliary LISP functions that accompanies the ILAs, but we will confine the present
cliscussion to a brief description of the Markov language and a brief exposition of the

current ILAs and the intraroom navigation algorithm.
B. The Markov Language

The central part of the Markov language is the Markov table, specifying actions to be
performed and the criteria for determining their sequence. The format of a Markov table
is an ordered collection of rows of identical format. Each row starts with a label, which is
followed by a predicate, a sequence of actions to be performed, and finally the label of
some other line in the table. This last item (which we have been calling the ‘“‘go-to'’) can
optionally specify that execution of the table could cease, causing the calling routine's
execution to resume in the conventional subroutine fashion. The characteristic execution
pattern is a sequential scan through the table's rows, testing the predicates one by one
unti a row is found whose predicate is true. Then the scan terminates and the actions (if
any) in that row are performed, and the go-to is followed; it will either indicate
completion of the execution of the table, or it will name a line in the table at which the
scan is to recommence. When the Markov table is first entered, the scan begins with the
first line in the table. Execution may be terminated in three ways: it can be completed
explicitly, by reaching a special go-to; the sequential scan can get to the bottom of the
table without having found a line with a true predicate; and finally, an action can be
fruitless, which will cause a loop suppressor to terminate execution of the table. In all
three cases, there is only one form of return from a Markov table, and the calling routine
(or Table) is expected to test for the desired results. (This seemed much simpler than

trying to make the individual action routines guess what its caller had in mind.)

41

The actions called for in an ILA may be LLAs, other ILAs, or arbitrary programs (usually
coded in LISP). Since the Markov. interpreter is itself a LISP program, an ILA can call

itself recursively.

The “go-to” part of a Markov table line is interpreted after completion of the action part.
In its simplest case, the “go-to™ consists of the label of a line at which to continue the
search for a true predicate. If several lines have the given label, one of the lines is
arbitrarily chosen; if no lines have the given label, one of the lines is arbitrarily chosen; if
no lines have it or if it is NIL, execution is terminated. (NIL is our conventional explicit

return.) The other case involves “loop suppression” and will be discussed below.

A Markov table is generally a sequence of actions that would transform an initial state
into a final “‘goal’ state via a linear sequence of intermediate states. Whether an action is
applicable to a particular state can usually be tested by a relatively simple predicate—the
one heading the table line with the action. Since actions in the real world frequently fail
to achieve their desired results, the Markov interpreter determines which action to execute
by testing the state predicates one by one, starting from the goal predicate (on the top
line) and working backward (i.e., down the table) until a true predicate is found. Markov
operators typically follow the execution of any component action by starting again with
the goal predicate. In its simplest form, each line of a Markov table would contain one of
the state predicates and the operator to be applied to that state; its “go-to’ would specify
the first line, which contained the goal predicate and an explicit return. Falling off the
end of a Markov table thus corresponds either to a drastic failure of one of the component
actions or 10 an inappropriate application of the Markov operator. Of course, persistent
failure of a component action to achieve its desired effect, i.e., to produce a state
satisfying a predicate higher in the table, would cause indefinite looping in such a Markov
table. To circumvent this possibility without requiring specific consideration in each
Markov table, we introduced ‘‘loop suppression into the Markov interpreter. Whenever
the predicate of a line is found to be true, a counter is incremented and checked against a
limit before the line's action is executed; if the counter becomes greater than the limit,
then interpretation of the table is terminated without execution of the action. Thus, if
the limit for a line is three (this is the current default value) then the action(s) on that
line will be executed a maximum of three times; if the line's predicate is found true a
fourth time, the table will return to the operator that invoked it. Of course, one can

specify a limit for a table line rather than accepting the default value. There is an

42

alternative form for the “'go-to’ just for this purpose: rather than being just a label, it
can be a two-element list. In this case, the first element is the label, and the second
element is the loop-suppression limit for that line; it is evaluated only once, at the time of

the first loop-suppression check for that line.

Table 5 illustrates the Markov language by presenting the actual code for the lowest-level
IL.A that pushes an object. Here, line 10 does some initialization; the action [i.e., the
(SETQ XYTARG ...)] is always performed because its predicate T is always true. Then
line 20's predicate checks whether the pushing operation is finished by means of its
(NEARENOQUGIH OB XYTARG TOL) predicate; if this is the case, then no actions {i.e.,
NIL) are performed, and control jumps to the label CLEANUP for some post-processing
before exit. Line 25's predicate similarly determines whether the object’s position is
known closely enough to continue the pushing operation. (This may not be the case either
initially or as the result of the object dropping off the pushbar during a push.) Line 30
causes the table to exit {via CLEANUP) if the object is past its target. Line 40's
prcdicnl-e is true if the robot has just pushed the object into a wall, and finally, line 50's
predicate is true if the robot has proper contact with the object. Line 10 and the lines
starting with the label CLEANUP are representative of a more usual programming
language. with the normal execution being sequential. Lines 20 through 50, however, have
the characteristic execution pattern of the ILAs: a loop testing for the main goal and
various subgozls and error conditions and recycling after any action is performed. This
particular ILA is designed to be especially simple because it is intended to be embedded in
several more layers of ILA before STRIPS becomes concerned with their robustness. Even
STRIPS-visible ILAs are called by PLANEX (see Chapter 8) from its execution tables, so

it is perfectly acceptable for this lowest-level pushing operator to fail as readily as it does.
C. The Actions

The following are brief descriptions of the present ILAs. The control relations among the

ILAs and between them and the rest of the system are shown in Figure 7.

ILAs that affect the state of the world have responsibility for making corresponding
changes to Shakey's axiom model of the current world. Such changes are mentioned
below wherever relevant; "'$" will be used to denote unspecified or changing values in the

model.

43

GOTHRUDR(DOOR FROMRM TORM) moves the robot from room FROMRN
to room TORM via door DOOR. It assumes only that the robot is in FROMRM; it uses
NAVTO to get to the door and BUMBLETHRU to go through it.

BLOCK{DX RX BX)} pushes box BX within room RX to a position blocking door DX.
This routine directly replaces the axiom (UNBLOCKED DX RX) by (BLOCKED DX RX
BX) in the model.

UNBLOCK({DX RX BX) pushes box BX within room RX to a position in which it
does not block door DX it directly replaces the axiom (BLOCKED DX RX BX) by
(UNBLOCKED DX RX). This routine prefers to push the box to the far side of the door

{as viewed from the initial position of the rohot), but it will also consider the other push.

GOTO2(X) moves the robot into the vicinity of X if X is a door; it directly updates
the (NEXTTO ROBOT $) axiom. A contemplated extension of GOTOQZ2 is to permit X to

be an object.

PUSHI1{DIST OB TOL) is the lowest-level push; as such, it maintains OB’s position
and deletes the (NEXTO OB $) and (NEXTTO $ OB) axioms from the model. It pushes
OB forward by DIST feet (within TOL feet); it assumes that the front horizontal

catwhisker is on when it is entered, and it exits under any of the following conditions:
{1) Tt is unnecessary to push OB forward, i.e.:

(a) OB is within TOL of the implied goal point; or
(b) OB is past the goal point in the current heading.
(2) The pushbar comes on hard.

(3) The front horizontal catwhisker is off.

In any of these cases, the robot backs up 2 feet in an attempt to free its catwhiskers for
normal navigation. The last argument TOL is optional and is defaulted to 1 foot if not

supplied.

ROLL2(DIST TOL)} is the lowest-level free-floor roll; as such it deletes the (NEXTTO
ROBOT $) axiom from the model. It moves the robot forward by DIST feet (within TOL
feet); if it engages a front catwhisker it asserts the (JUSTBUMPED ROBOT T) axiom and

44

backs away in an attempt to free the catwhisker. TOL is an opticnal parameter defaulted

to 1 foot if not supplied; DIST may be negative.

BUMBLETHRU(FROMRM DOOR TORM) moves the robot from room
FROMRM to room TORM through door DOOR. It assumes that the robot is initially in
FROMRM and in front of door. It heads for the corresponding position in TORM and
uses the catwhiskers (if necessary) to help it negotiate the door. It updates the (INROOM
ROBOT $) and (NEXTTO ROBOT $) axioms in the model, and it is the most basic door-
negotiating routine in the system. [t uses the vision routine CLEARPATH before entering

an unknown room.

PUSH(OBJECT GOAL TOL) is the highest-level ILA for pushing a box. Its three
arguments are the name of an object, the goal coordinates to be pushed to, and the
allowable tolerance. The tolerance argument may be omitted, in which case its value
defaults to 2.0 feet.

The oniy precondition for PUSH is that Shakey and the OBJECT are in the same room.
The routine calls FINDPATH (described below) to plan a path to GOAL from the current

object location. PUSH will fail if any of the following conditions are true:

(1) OBJECT is not in a pushable location.

(2) No path of width W [W=MAX(WIDTH(OBJECT),WIDTH(ROBOT))|
can be found from the current position of OBJECT to GOAL.

{3) No path can be found from the current position of the robot to the
“pushplace” of OBJECT, i.e., Shakey cannot get behind OBJECT.

PUSH2{OBJECT GOAL TOL) is a straight-line push, envoked by PUSH to move
OBJECT along successive legs of the planned path. PUSH2 attends to updating the
positions of ROBOT and OBJECT. If the uncertaintiesin position exceed TOL, PICLOC
updates the position of ROBOT or OBLOC the position of OBJECT {PICLOC and
OBLOC are described in Chapter Six.)

A PUSH2 is accomplished in three basic stages:
(1) The robot navigates to the “‘pushplace” of OBJECT.

(2) The robot rolls forward and makes contact with the object with a front
catwhisker, by using ROLLBUMP.
45

(3) PUSHI1 is called, which turns on the overrides and causes the robot to

roll forward the required distance.

NAVTO{GOAL TOL)} will maneuver the robot to within TOL feet of the point
GOAL. Like the PUSH [LA, it uses FINDPATH to plan the journey to GOAL. NAVTO
will fail if oo path is found; if a path exists, it uses POINT AND GOTO!I for each leg of

the journey.

POINT{THETA TOL) attempts to turn the robot to within TOL degrees of bearing
THETA. If necessary, the vision routine PICTHETA (Chapter Six) will be used to
determine the bearing of the robot. A catwhisker engaged during the turn will cause the

robot to turn back to its original bearing and then attempt to locate the object with
PICBUMPED {Chapter Six).

GOTO1{GOAL TOL) moves the robot forward in a straight line to within TOL feet
of GOAL. It will use ROLL2 to actually move the robot, or it will use vision under the

following conditions:

(1) If the robot’s location is uncertain (>TOL), it will update its position
using PICLOC.

(2) If moving in an unknown room, it will use CLEARPATH.

(3) If the result of CLEARPATH is BLOCKED, it will use PICDETECTOB

(Chapter Six) to enter information about the obstacle in the model.

(4) If the robot unexpectedly engages a catwhisker while rolling,
PICBUMPED will locate the object and update the model.

ROLLBUMP(DIST TOL OBJECT) moves the robot forward DIST feet to engage a
frout catwhisker on the object OBJECT. It updates the (NEXTTO ROBOT %)

predicate{s} in the model. If an object is not encountered within TOL feet of DIST,
ROLLBUMP fails.

D. The Pathfinding Algorithm

FINDPATH(ROB G JOURN) is the routine to plan an intraroom path from ROB to
G. The arguments ROB and G are each a list of X, Y coordinate pairs. JOURN is the
type of journey to be undertaken, either ROLL or PUSH. If JOURN is ROLL, the

48

((STVOOT FIGVLAONUVN) ((1 SO413S0d) (S°1 INOUJOVU) DUVERX (*T1 1TOL)) 1NSNd doud3adq)
((SUALINVHYd TTIVLAONUVW ‘«) (T0L f10 LSIA) 1HSONd d0Udddd)

((F7aVL. FJTAVLAONHWYA : %)
(8 (((($ LogOoH OLLX3AN) 310nd) FLATITINY) L 2I)

(22 (C1- TI0W) (4OVETIOH)) (NOMDA) 12)
(12 :G 0 INOHIQVH SN'1d) 40 SOJAORSNdIAS)) SO0dLAS0a dNNVATDY)
"oz
(((do ($ 3rond) (OLLXAN JLOND) ISIT) FLATITIN)
((($ 3Lond) 40 (OLLXAN T10nd) 1S1T) ILTIITIN)
(LNOH4aV¥ 40 SOdH0SNdL1S)
(1IN SOdL3IS0d bL3s)
("0 aryao)
((((((3 3Lond) 40 (Snldvn JLONG) LSIT) ANIJATH) INOMAAVH S0Td)
(((L0doy 310nd) SOdA0) DHVEIAX FORVLESIA) FOKIUIAAIA)
TT04) (°1 AIY¥AO))
((BUMASIIM) (HI JLOND) BWIW) *0g)
(dNNVATD
(((6'0 LNOUAQVH SN1d) 40 SOdAOHSNALAS) (TIN 50413504 bids))
((SHANSIM) (OB ILONd) BEKW) 'oF)
(dNNVATO

TIN
(06 ((((($ LOAOH VIIHL) FALONG) QNIJATH) ((HO SOdAO) DYVLIAX OLONIYYVIU) JAI1CQITIONV) SHV) dUdLvAUD) “0E)

(12 TIN ((T0L (HO SOdd0) €0 HONONIYVAN) LON) °GE)

(dONVTIO TIN (104 DYVIAX 90 HDNOMAYVAN) ‘0E)

(o2 (((1LSsIg ((($ 104d0H VIIHL) JLOND) GRIJATH) (40 $0dd0) DUVIAX) DUVLAX bIIS)) L "01))
. 1HSNd doudd3a)

((CTIN TTAVLAONYVW :+) THSNd 1IISNd dO¥d43d)

V11 ONIHSNd TIATT-LSAMOT IHL HOd TTHVI AOHUVH

Table 5: MARKOV TABLE FOR THE LOWEST-LEVEL PUSHING ILA*

*From [11], page 41.

47

MACROPS AND PLANEX

T

GOTHRUDR

UNBLOCK GOTO2

PUSHZ GOTO1
PUSH1 ROLLBUMP POINT ROLL2 BUMBLETHRU

—————————

=

LOW-LEVEL ACTIVITIES

TA-B973-9

Figure 7: CONTROL STRUCTURE OF THE INTERMEDIATE LEVEL

function returns a path along which the robot can navigate from ROB to G. If JOURN is
PUSH, the returned value is a path by which the robot can move a box at ROB to point
G. In this case global variables PUSHOBNAME (name of the box) and OBRAD (radius of
the box) are set, so that in computing a pushing path the box radius and the ability of the
robot to get behind the box are taken into account.

The returned value from FINDPATH is a list of subgoal points to be arrived at in order:
(XY UX5Y4a) o (X1 Y,1)G). If a direct-line path exists from ROB to G, the value of

FINDPATH is just (G); if no path exists, the value is NIL.
48

The pathfinding algorithm is a breadth-first search of the tree of predecessors to G. At
cach node of the treec, FINDPATH tests for a direct-line path between ROB and the

currcnt node, say PN. If it exists, the path from PN to G is returned. Otherwise, the
tree is grown one level deeper from PN by computing predecessors to that point. If no
predecessors exist, the path from PN to G is removed {from the tree, thus reducing the

search space.

The predecessors to node PN are defined as the intersections of the tangent fines from ON
and ROB around the first obstructing object in the straightline path conpecting them.
Thus, cach point has at most two predecessors. Figure 8 illustrates one possible

configuration that would generate the tree in Figure 9.

Beforc a computed predecessor is added to the tree, it is tested to determine whether it is
within the room or within the region of another obstacle. It either condition is true (as

for PO in Figure 8), a shorter path (P5 P4) is computed using the tangents that generated
PO. If either of these points is unacceptable under the criterion just described, the entire
search in that direction is abandoned, and the next node (in this case P3) is considered. A
predecessor that is acceptable under this criterion is added to the tree 1 f a straightline

path exists between it and its parent node. Otherwise, predecessors are sought recursively

to find a path from the parent node to its computed predecessor.

The searching in FINDPATH terminates, then, when either a path has been found or
when the search tree is reduced to NIL. Thus, the path that is chosen (assuming at least
one exists) is the first one found, that is, the one with the smallest number of legs in the
journey. This criterion was chosen over a minimum-distance criterion to reduce the

amount of subsequent thinking and execution time for the robot.*

*From [11}, pages 37-49.

49

SON NNANNNNNNGE

ROB

TA-B973=-10

Figure 8: AN OBSTACLE CONFIGURATION FOR FINDPATH*

P P2

P4

] 7

ps 73

TA-§973-11

Figure 8: SEARCH TREE FOR CONFIGURATION OF FIGURE 8*

*From [11], page 48.

50

CHAPTER SIX

Viaiton Routines

We first present an cverview of the main vision routines from [11].
A. Introduction

The current. robot executive program never calls for a general visual scene analysis.
Instead, under appropriate circumstances various of the intermediate-level actions (ILAs)
call specific vision routines to answer certain specific questions. These specialized vision
programs perform three basic tasks: locating and orienting the robot, detecting the

presence of objects, and locating objects.

A summary of the six vision routines currently used by the ILAs is given below in Section
C. PICLOC is described in Appendix B, and CLEARPATH is described briefly later.
Most of the other routines make use of LOBLOC, which uses vision to locate accurately

an object whose position is only roughly known.
The following section describes the operation of this routine in some detail.
B. Object Location

Given the approximate floor location of an object, LOBLOC takes a television picture of
the object. analyzes the picture to find the exact coordinates, and enters this information
in the robot's world model. This specialized task can be done more rapidly and with less
chance for error by a special program than by performing a complete scene analysis and

then extracting the desired answer from the resulting description. However, certain

preconditions must be satisfied for LOBLOC to function properly. These are as follows:

(1) The approximate location must be sufficiently accurate and the object
must be sufficiently small and unoccluded that at least two, and

preferably three, lower corners of the object are in view.

(2) The object and the robot must be in the same room.

51

{3) The location of the robot with respect to the walls must be known to

within approximately one foot.

The first action that LOBLOC performs is to pan and tilt the television camera so that
the nominal floor position image is in the center of the picture. The resulting picture is
taken at 80-line resolution to speed subsequent region analysis operations. However,
before region analysis is begun, the program accesses the mode! to compute the image of
the wall-floor boundary. Everything in the picture above this boundary is erased, thereby

eliminating baseboards, door jambs, and other possible sources of confusion.

The resulting picture is then subjected to region analysis. That is, it is partitioned into
elementary regions, and these regions are merged using the phagocyte and weakness
heuristics {18]. The following regions are automatically deleted from the resulting region

list:

(1) The region above the wall-floor boundary.

(2) All regions smaller than some threshold 4. (Currently § = 4 cells.)

The next major step is to identify the floor region. This is done by scoring each region.
The features or properties that enter into this score are the area A, the ratio R of
perimeter-squared to area, the average brightness B, and the lowest coordinate Z of the
external contour. Letting A .. be the largest area, R, the largest ratio, B . the
highest brightness, and 2, the smallest coordinate, we compute the scoring function by

The region for which D? is minimum is declared to be the floor.

The next major step is to inspect the n ﬁeighbors of the floor to find the ones that are
most likely to be the faces of the object in question. Special tests are made to treat the

simple cases where n happens to be 0, 1, or 2. In general, for each region neighboring the

52

+

floor we compute its area A and a quantity X which i1s a simple measure of the horizontal
displacement of the region from the center of the picture. These features are combined in

4 scoring function:

2 2
D = f1-_A_ +(ﬁ£__> ,
Amax 80

and the regton for which D? is minimum is declared to be one face of the object. The
same criterion is used to select the other visible face from the neighbors of both the floor

and the first face.

The major problem remaining is to identifly the vertices where the corners of the object
mect. the floor. This is done by processing the common boundary between the face regions
and the floor region. After simple straight-line connections are made between endpoints
of any gaps, this common boundary consists of a chain of points along the lower edge of
the object. The lowest point on this chain is taken to be the central vertex, and the
corners op either side are found by the method of iterative end-point fits [17]. Once these
three image points are determined, the support hypothesis is used to locate the
corresponcling points on the floor. The resuiting coordinates can then be entered in the
mode] under the name of a new object if the status of the room is unknown, or under the

nome of the nearest object if the status is known.
C. ILA Vision Routines

The following is a summary of the intermediate-level routines related to Shakey’s visual

system:

CLEARPATH (X 7Y) decides whether the path from (AT ROBOT $*) to (X Y) is
clear. In analyzing pictures, it inspects only the image of the path to be traversed, and it
uses the range finder to detect large, close objects. The value returned is either CLEAR,
UNKNOWN, or (BLOCKED XO YQ), where {XO YO) roughly locates an obstacle,

OBLOC {OB) uses the model information about the location of object OB and the

routine LOBLOC to update (AT OB $*) and (DAT OB $*).
53

PICBUMPED (X Y) is cailed when a bump occurs at (X Y). If Shakey is in a room of
known status, PICBUMPED calls PICLOC; otherwise it calls PICDETECTOB (X Y).

PICDETECTOB (XY) uses LOBLOC to locate the object near (X Y). If Shakey is
in a room of known status, and if OB is the nearest object, (AT OB $*) and (DAT OB$*)

are updated; otherwise a new object is entered in the model.

PICLOC uses the landmark routine (Appendix B} to update (AT ROBOT $*), (DAT
ROBOT $*), (THETA ROBOT $), and {DTHETA ROBOT $).

PICTHETA updates (THETA ROBOT $) and (DTHETA ROBOT $). Intended to be
uscd before a long, straight-line journey, PICTHETA currently calls PICLOC.*

Additional material about Shakey’s vision system was reported in [10].

Vision Programs for Intermediate-Level Actions

The special-purpose vision programs basically perform only three functions: orienting and
locating the robot, detecting the presence of objects, and locating objects. We shall

consider each of these functions in turn:

When the environment of the robot is represented accurately and completely in the
model, the chief role of vision is to provide feedback to update the robot's position and
orientation. Angular orientation information is often needed in advance of a relatively
long trip down a corridor, where a small angular error might be significant. The simplest
way to obtain orientation feedback is to find the floor/wall boundary in the picture,
project it onto the floor, and compare this result with the known wall location in the
model; any observed angular discrepancy can be used to correct the stored value of the

robot's orientation.

For maneuvers such as going through a doorway, both the robot's position and orientation

must be accurately known. This information can be obtained from a picture of a known

*From [11f, pages 51-54.

54

point and line on the floor. Such distinguished points and lines are called laocdmarks, and
include doorways, concave corners, and convex corners. The basic program for lndiag
such landmarks is described in Appendix B. The program has undergone several
refinements and improvements, and now works with the modcl described in Chapter
Three. Execution time 15 essentially the time required to pan, tilt, and turn on the
camera.* Concurrently, the accuracy is limited by mechanical factors to hetween 5 and 10
perceﬁt in range and 5 degrees in angle. Increased accuracy, if needed, can be obtained by

improving the pan and tilt mechanism for the camera.

Before the robot starts a straight-line journey, it may be desirable to check that the path
is indeed clear. A simple way to do this is to find the image of the path in the picture
and examine that trapezoidal-shaped region for changes in brightness that might indicate
the prescnce of an obstructing object. This is a simple visual task, and a program
implementing it has been written. In its current form the program uses the Roberts-cross
operator to detect brightness changes. When we first ran the program, we were surprised
to discover that at steep camera angles the texture in the tile Mloor can be detected and
give rise to false alarms. This is an instance of a major shortcoming of special-purpose
vision routines, namely, the failure of simple criteria to cope with the variety of
circumstances that can arise. This particular problem can be solved by requiring a certain
minimum run-iength of gradient. However, shadows and reflections can still cause false
alarms, and the only solution to some of these problems is to do more thorough scene

analysis.**

*Since the camera, television control unit, and television trapsmitter draw a large amount of
power from the batteries, they are normally off. Approximately ten seconds is required from the
time these units are turned on to the time that a picture can be taken.

**From {10f, pages 41-48.

55

CHAFTER SEVEN

STRIPS

Shakey used a planning system called STRIPS (an acronlym based on
STan ford Reasearch Institute Problem Solver)to chain together ILAs that
would accomnplish specific goals. STRIPS was one of the importent early
problem-golving systema. The original version of this program 1s
deseribed in detail in a paper [18]; @ somewhat modified story appears in
[19]. More recent hierarchical planning systems, such as NOAH [20] and
SIPE [21], would now be more appropriate than STRIPS for robot
planning. The following excerpt is a summary of STRIPS that appeared
in a paper and an SRI Al Center Technical Note [22] about learning and

executing planas.
Description

Because STRIPS is basic to our discussion, let us briefly outline its operation. The
primitive actions available to the robot vehicle are precoded in a set of action routines.
For example, execution of the routine GOTHRU(D1,R1,R2) causes the robot vehicle
actually to go through the doorway, D1, from room RI to room R2. The robot system
keeps track of where the robot vehicle is and stores its other knowledge of the world in a
model composed of well-formed formulas (wifs) in the predicate calculus. Thus, the
system knows that there is a doorway D1 between rooms R1 and R2 by the presence of
the wil CONNECTSROOMS(D1,R2,R2) in the model.

Tusks are given to the system in the form of predicate calculus wifs. To direct tbe robot
to go to room R2, we pose for it the goal wiff INROOM(ROBOT,R2). The planning
system, STRIPS, then attempts to find a sequence of primitive actions that would change
the world in such a way that the goal wif is true in the correspondingly changed model.
In order to generate a plan of actions, STRIPS needs to know about the effects of these
actions; that is, STRIPS must have a model of each act;ion. The model actions are called

operators and, just as the actions change the world, the operators transform one model

57

into another. By applying a sequence of operators to the initial world model, STRIPS can
produce a sequence of models (representing hypothetical worlds) ultimately ending in a
wmodel in which the goal wif is true. Presumably the, execution of the sequence of actions

corresponding to these operators would change the world to accomplisb the task.

Each STRIPS operator must be described in some convenient way. We characterize each
operator in the repertoire by three entities: an add function, a delete function, and a
precondition wff. The meanings of these entities are straightforward. An operator is
applicable to a given model only if its precondition w{T is satisfied in that model. The
cffect of applying an (assumed applicable) operator to a given model is to delete from the
model all those clauses specified by the delete Mfunction and to add to the model all those
clauses specified by the add function. Hence, the add and delete functions prescribe how
an operator transforms one state into another; the add and delete functions are defined

simply by lists of clauses that should be added and deleted.

Within this basic framework STRIPS operates in a GPS-like manner [23]. First, it tries to
establish that a goal wiTl is satisfied by a model. (STRIPS uses the QA3 resolution-based
theorem prover {15] in its attempts to prove goal wffs.) If the goal wif cannot be ﬁroved,
STRIPS sclects a 'relevant’’ operator that is likely to produce a model in which the goal
wfl is “more nearly” satisfied. In order to apply a selected operator, the precondition wif
of that operator must of course be satisfied: This precondition becomes a new subgoal
and the process is repeated. At some point we expect to find that the precondition of a
relevant operator is already satisfied in the current model. When this happens the
operator is applied; the initial model is transformed on the basis of the add and delete
functions of the operator, and the model thus created is treated in effect as a new initial

model of the w.orld.

To complete our review of STRIPS we must indicate how relevant operators are selected.
An operator is needed only if a subgoal cannot be proved from the wils deflining a model.
In this case the operators are scanned to find one whose effects would allow the proof
attempt to continue. Specificailly, STRIPS searches for an operator whose add function
specifies clauses that would allow the proof to be successfully continued (if not completed).
When an add function is found whose clauses do in fact permit an adequate continuation
of the proof, then the associated operator is declared relevant; moreover, the substitutions
used in the proof continuation serve to instantiate at least partially the arguments of the

operator. Typically, more than one relevant operator instance will be found. Thus, the

58

catire STRIPS planning process takes the form of a tree search so that the consequences
of considering different relevant operators can be explored. In summary, the “inner loop™
of STRIPS works as follows:

(1) Select a subgoal and try to estabhsh that it is true in the appropriate
model. If it is, go to Step 4. Otherwise,

{2) Choose as a relevant operator one whose add function specifies clauses

that allow the incomplete proof of Step 1 to be continued.

{3) The appropriately instantiated precondition wff of the selected operator

constitutes a new suhgoal. Go to Step I.

(4) If the subgoal is the main goal, terminate. Otherwise, create a new
model by applying the operator whose precondition is the subgoal just
established. Go to Step 1.

The final output of STRIPS, then, is a list of instantiated operators whose corresponding

actions will achieve the goal.
An Example

An understanding of STRIPS is greatly aided by an elementary example. The following
example considers the simple task of fetching a box from an adjacent room. Let us

suppose that the initial state of the world is as shown below:

" Room R1 Room R2
Door
O 01
T BOX1
ROBOT
IDOOI'[L
I p2
Room R3

o9

Initial Model

Mo: INROOM(ROBOT,RI)
CONNECTS(D1,R1,R2)
CONNECTS(D2,R2,R3}
BOX(BOX1)
INROOM(BOX1,R2}

(¥x Vy Vz}[CONNECTS(x,y,2) = CONNECTS (x,z,y)]
Goal wif

Go: (3x) [BOX(x) A INROOM(x,R1)]

We assume for this example that models can be transformed by two operators GOTHRU
and PUSHTHRU, having the descriptions given below. Each description specifies an
eperator schema indexed by schema variables, We will call schema variables parameters,
and denote them by strings beginning with lower-case letters. A particular member of an
operator schema is obtained by instantiating all the parameters in its description to
constants. [t is a straightforward matter to modify a resolution theorem prover to handle
wffs containing parameters [18], but for present purposes we need only know that the
modification ensures that each parameter can be bound only to one constant; hence, the
operator arguments (which may be parameters) can assume unique values. (In all of the
following we denote constants by strings beginning with capital letters and quantified

variables by x, y, or z):

GOTHRU{d,r1,r2)

(Robot gees through Door d from Room rl into Room r2.

Precondition wif

INROOM{ROBOT,r1) A CONNECTS(d,rl,r2)

80

Delete List

INROOM(ROBOT,$)
Our convention here is to delete any clause containing
a predicate of the form INROOM(ROBOT,$) for any value
of 3.
Add List

INROOM(ROBOT,r2)

PUSHTHRU(b.d,r1,r2)

(Robot pushes Object b through Door d from Room rl
into Room r2.)

Precondition wif

INROOM(b,r1) A INROOM(ROBOT,r1) A CONNECTS(d,rl,r2)
Delete List

INROOM(ROBOT,$)

" INROOM(B,$)

Add List

INROOM(ROBOT,r2)

INROOM(b,r2).

When STRIPS is given the problem it first attempts to prove the goal G, from the initial

model My. This proof cannot be completed; however, were the model to contain other
clauses, such as INROOM(BOXI1,R1), the proof attempt could continue. STRIPS

61

determines that the operator PUSHTHRU can provide the desired clausc; in particular,
the partial instance PUSHTHRU(BOX1,d,r1,R1) provides the wff INROOM{BOX1,R1).

The precondition G, for this instance of PUSHTHRU is

G,: INROOM(BOX1,r1)
A INROOM(ROBOT,r1)
A CONNECTS(d,r1,R1).

This precondition is set up as a subgoal and STRIPS tries to prove it from M.

Although no prool for G, can be found, STRIPS determines that if rl = R2 and d = D1,
then the proof of G, could continue were the model to contain INROOM{RCOBOT,R2).
Again STRIPS checks operators [or one whose eflects could continue the proof and settles

on the instance GOTHRU(d,r1,R2). Its precondition is the next subgoal, namely:

Gy: INROOM(ROBOT 1)
A CONNECTS(d,r1,R2).

STRIPS is able to prove G, from M, using the substitutions rl == R1 and d=D1. It
therefore applies GOTHRU(D1,R1,R2) to Mj to yield:

M,: INROOM(ROBOT R2)
CONNECTS(D1,R,R2)
CONNECTS(D2,R2,R3)

. BOX(BOX1)
INROOM(BOX1,R2)

(¥x Yy Yz)[CONNECTS(x,y,z) = CONNECTS(x,2,y))-

Now STRIPS attempts to prove the subgoal G, from the new model M;. The proof is
successful with the instantiations rl = R2, d = D1. These substitutions yield the
operator instance PUSHTHRU(BOX1,D1,R2,R1), which applied to M, vields

62

My INROOM(ROBOT,RI)
CONNECTS(D1,R1,R2)
CONNECTS(D1,R2,R3)
BOX(BOX1)
INROOM(BOX1,R1)

(Vx Vy vz) [CONNECTS(x,z,y)).

Next, STRIPS attempts to prove the original goal, Gy, from M,. This attempt is

successful and the final operator sequence is

GOTHRU(D1,R1,R2)
PUSHTHRU(BOX1,D1,R2,R1).*

*From [22f, pages 4-11 of Technical Note.

CHAFPTER EIGHT

LEARNING AND EXECUTING PLANS

Once a plan to accomplish a goal has been constructed, the robot ezecutive
system, called PLANEX, ezecutes tt. If problems artse during executton,
PLANEX must also decide how to modify the plan it is ezecuting or
whether to construct a new plan. The Shakey system also was able to
learn generclized versiona of the plans it constructed that could be used to
help accomplish subsequent tasks. These capabilities were described in a
paper [22] and summarized in one of the Shakey technical reports [11].

The following excerpt is from that report:
A. Introduction

The basic problem-solving system used by Shakey is STRIPS, a system that makes use of
a combination of heuristic search and formal deductive techniques. However, STRIPS in
its original form is limited to constructing a plan for solving a specific problem. In this

section we describe new:

(1) Procedures for comstructing “generalized” plans that are applicable to a
large family of problems (in addition to the specific problem that

motivated the planning process).

(2} Methods for storing, selecting, and monitoring the use of generalized
plans while a task is actually being carried out.
The recently developed methods for storing and using generalized plans allow us:

(1) To store a generalized plan as a sequence of, say, n parameterized

operators.
{2) To use as a single operator in a subsequent planning process many of

the legal subsequences among the 27 - 1 subsequences of the original

sequence of n operators.

a5

{3) To identify for monitoring purposes exactly those effects of a selected

subsequence that are necessary for the success of the new plan.

As a rough illustration of the use of these capabilities, suppose that we already have a
generalized plan for closing a door and turning off a light. We are now given the task of
just turning off some particular light. The methods to be described will extract from the
original plan the appropriate subsequence of operators needed to turn off the light.
Suppose now that the subsequence of operators, or subplan, for turning off the light also
has the effect of leaving the robot pointing in a specified direction. If this effect is a
legitimate side-¢ ffect—that is, if the successful execution of the plan does not require the
robot to be pointing in a specified direction—then the methods described will identify this
fact and the final robot orientation will not be monitored during plan execution. Hence,
the plan execution mechanism will not reject as ‘‘unsuccessful" an execution that has

failed only in a detail irrelevant to the task at hand.

The processes for storing a generalized plan begin with the creation by STRIPS of a
generalized plan, or macro aperator—that is, a sequence of n operators whose arguments
are parameters. During the creation of this plan, STRIPS performed proofs
demonstrating that each operator was in fact applicable at the time it was used. We
assume throughout this section the availability of both the STRIPS plan and certain
information about the structure of the proofs performed by STRIPS to generate the plan.
We also assume thé availability of descriptions of each operator used in the plan. An
operator description consists of three things: a prccondt'tfan formula, which must be
provable from a mode! if the operator is to be applied to that model; an add-list,
specifying clauses added to the model; and a delete function (represented as a list of
literals), which maps a set of clauses into a subset of itself that remains true after the

operator has been applied.
B. Storage of a Generzalized Plan

We store a generalized plan in the the form of a triangular table* as shown in ligure 10.
The ¢olumns of the table, with the exception of column 0, are labeled with the names of
the operators of the plan, in this example OP;, ...,OP,. For each column i, i = 1, ...,4, we

place in the top cell the add-list A; of operator OP;. Going down the i column, we place

*The late John Munson of the SRI Artificial Intelligence Center originally suggested this
tabular format.

66

0 FC‘
OP'I
1 Fsz\ ~ (A1) A1
OPZ
2 PCBA -~ lA1,2) DzlA1l AZ
OPS
3 PC‘A -~ |A1'2'3) DaozlA1l DatAzl A3
OP‘
4 D‘D:’Dz(A1) DdDJ(AZ} D‘lAal A‘
0 1 2 3 4
TA-8973-12

Figure 10: TYPICAL MACROP

in consecutive cells the portion of A; that survives the application of subsequent operators.
This is indicated by the delete function D;, i = 2, 3, 4, that maps an add-list into the
subset of itself remaining true after the application of OP;. (The delcte function D, of
OP, is applicd to the model in which MACROP is applied, and not to any of the add-
lists.) Thus, cell (2,1) contains Dy(A;), which is the portion of A, still true after OP, is
applied. Cell (3,1) contains Da{Dy(A)) =D3Dg(A), which is the subset of A; that
survives the application of both OP, and OP.

We can now interpret the content of the it row of the table, excluding the first column.
Since each cell in the i*¥ row (excluding the first) contains statements added by one of the
first | operators and not deleted by any of the first i operators, we see that the union of
the cells in the it row {excluding the first cell) specified the add-list obtained by applying
in sequence OP,, ...,OPi. We denote by Ay the add-list achieved by the first i
operators applied in sequence. The union of the cells in the bottom row of a triangle table

specified the add-list of the complete macro operator.

87

Let us now consider the first column of the triangle table, which we have so far ignored.
Loosely, the statements in row i of column zero are involved with the precondition

formula PC; ; of OP;_ ;. To be more specific, cell (i,0) contains clauses needed to prove
PCi
a formula the support of that formula. The clauses in cell (i,0) are thercfore the portion

but not contained in A; ;. We will call the set of clauses (axioms) used to prove

of the support of PC; | that was true in the initial state. (In Figure 10, we have used the
notation PCiA—-aAl' Lite indicate the contents of cell (i,0).) The remairing part of the

support of PC; is supplied by applying in sequence OP,,OP;. The ith row of the table,
then, contains the complete support of the precondition of OP; ;. It is convenient to flag
the clauses in row i that are the support of PC;_ ;. and hereafter speak of marked clauses;

by comstruction, obviously, all clauses in column zero are marked.
C. Planning with Generalized Plans

1. General Approach

In the ﬁreceding section, we described the construction of triangle tables for storing
generalized plans. Now let us consider how a generalized plan will be used by STRIPS

during a subsequent planning process.

The first thing to emphasize is that the ith row of a triangle table (excluding its first cell)
represents the add-list Aj i 30 D-TOW table presents STRIPS with n alternative add-
lists, any one of which can be used to reduce a difference encountered by STRIPS during
“its normal planning process. STRIPS selects a particular add-list in the usual fashion by
testing the relevance of that add-list.'with"respect‘toihe-differenca currently being
considered. Suppose for a moment that STRIPS selects the ith add-list Ay i i <mn.
Since this add-list is achieved by applying in sequence OP, ,...,OP;, we will obviously not

be interested in the application of OP +OP, and will therefore not be interested in

i+1
establishing any of the preconditions PGC;,,--PCp. Now in general, some steps of a plan
are needed only to establish preconditions for subsequent steps. If we lose interest in the
tail of a plan—that is, in the last (n - i) operators—then we may be able to achieve some
economies by omitting those operators among the first i whose sole purpose is to establish
preconditions for the tail. Conceptually, then, we can think of a single triangle table as
representing a family of generalized operators. Upon the selection by STRIPS of a
relevant add-list, we must extract from this family an economical parameterized operator

achieving the add-list. STRIPS must then be provided with a complete

68

dlescription—precondition wff, add-list, and delete function—of the extracted operator so

that it can be used during the planning process.

In the following paragraphs, we will explain by means of an example an algorithm for

accomplishing this task of operator eztraction.

2. The Operator Extraction Algorithm

C'onsider the illustrative triangle table shown in Figure 11. Each of the numbers within
cells represents a single clause. The circled clauses are “marked” in the sense described
earlier: that is, they are used to prove the precondition of the operator whose name
appears on the same row. A summary of the structure of this plan is shown below, where

“I" refers to the initial state and “‘F" to the final state:

Precondition Support Precondition Support

Operator Supplied By Supplied To

OP, I OP,

OP, I OP,

OP4 I : OP,, F

OP, 1,0P, F

OP, I,OP, OPg, F

OPy [,OPg OP,

OP- 1,OP4,0Pg F

Suppose now that STRIPS selects A, 633 the desired add-list and, in particular, sclects
clause 16 and clause 25 as the particular members of the add-list that are relevant to
reducing the difference of immediate interest. These clauses have been marked on the
table with a dot. The operator extraction algorithm proceeds by examining the tahle to
determine what effects of individual operators are not needed to produce clauses 16 and
25. First, OP7 is obviously not needed; we can therefore remove all circle marks from row
6, since those marks indicate the support of PC,. We now inspect the columns, beginning
with column 8 and going from right to left, to find the first column with no marks of

either kind. Column 4 is the first such column. The absence of marked clauses in column

69

4 means that the clauses added by OP, are not needed to reduce the difference and are
not required to prove the precondition of any subsequent operator; hence we delete OP,
from the plan and unmark all clauses in row 3. Continuing our right-to-left scan of the
columns, we note that column 3 contains no marked clauses. (Recall that we have already
unmarked clause 18.) We therefore delete OPg4 from the plan and unmark all clauses in
row 2. Continuing the scan, we note that column 1 contuins no marked entries (we have

already unmarked clause 11), and therefore delete OP, and the marked eatries in row 0.

or

11,12

13
P

mz 14,15

ORNGRNEORNG®

17,18
1 15, 16 ’
@ 2 19, 20

Ol“4
a 12 17,18 na
° 19, 20 3
QP5
5 12 16 17,18 1,22 @
. OFE
L] L]
6 18 IT. 21,22 24 @
097
7 17 21 b2 6
[1 2 3 4 g 6 7
TA-2973-13

Figure 11: MACROP WITH MARKED CLAUSES

70

The result of the table-editing process just described is shown in Figure 12. (The question
mark in cell {2,1) will be explained momentarily.) A summary of the structure of this

plan is shown below:

| ©

07,
1O
OPS
: ?
OP6
L] L]
3 16 24 25
0 1 2 3
TA-8973-14

Figure 12: MACROP AFTER EDITING

Precondition Support Precondition Support
Operator Supplied By Supplied To
OP, I OPg,F
OP, L,OP, OPg
OF; I,OPg F

We have thus reduced the seven-step generalized plan we started with to a compact three-

step plan that specifically produces an add-list containing the relevant clauses.

Now that an operator achieving a desired add-list has been extracted, we must provide

STRIPS with its description. The precondition wif is obvious; it consists of the

71

conjunction of all clauses in column 0. The computation of the add-list and delcte
function of the new operator is a little more complicated. First, notice in [Figure 11 that
clauses 14, 15, and 18 are added by OP,. Clause 14 is evidently deleted by OP, since it
does not appear in cell (3.2). The extracted plan, however, does not include OP5, and we
cannot tell whether clause 14 would survive the application of OPg or OP in the
extracted plan—hence the question mark in Figure 12. Furthermore, cell (3,1) may
contain more clauses than shown. This example illustrates the necessity of computing a

new add-list and delete function for the extracted operator.

The computation of a new add-list and delete function for a macro operator is based on
the add-lists and delete functions of the component operators. Suppose the macro
operator of Figure 12 is applied to some state S; (in which we assume that clauses 3, 7, 8,
and 9 are true). Since STRIPS does deletions before additions, we can write the resulting

state Sr a8:
where we have used “+4”’ to mean set umion. Now it is not difficult to show that delete
functions distribute over set union, that is, to show for any set A and B and any delete
function D that

D(A + B) = D(A) + D(B)
Henoce, we can write the final state Sr as:

Sp= DgDgDa(S;) + DgDs(As) + Dg(Ag) + Ag

Since this has the form S = D(S;) + A, we see that the delete function of the macro

operator is the composed function
DgDsDy
and that its add-list is

DgDg(Aq) + DglAs) + Ag

72

il is interesting to note that this add-list is precisely the last row of the triangle table

constructed as described in the previous section, the plan OP,. OPg, OPg. In general, we
¢an say that the add-list of a macro operator is given by the last row of its triangle table
representation, and that its delete function is given by the composition of the component

delete functions.

3. Refinements

In the previous paragraphs, we outlined an algorithm for extracting from a genecralized
plan a subsequence of operators that add particular clauses to a model. We would now
like to describe two refinements: one needed to avoid certain inconsistencies that could
otherwise occur, and one for achieving further economies when more than one level of

triangle tables are involved.

a. Add-List Refinement

Consider a simple generalized plan consisting of two consecutive PUSH operators, each of
which pushes a (parameterized) object to a (parameterized) place. The triangle table for
this plan might be as shown in Figure 13 where for simplicity we have assumed that the
PUSH operator has no preconditioh and hence column 0 is empty. Because the clause
AT(OBI1,P1) appears in cell (2,1), we know that this clause was not deleted by the second
push operator. Suppose now that STRIPS selects row 2 as an add-list. By instantiating
OBl and OB2 to the same object name, and instantiating P1 and P2 to distinct locations,
we evidently have a plan for achieving a state in which the same object is simultaneously
at two different places! The source of this embarrassment lies in the delete mechanism

used by STRIPS, which we now examine in some detail.

73

0 PUSH {OB1, P11}

1 AT 10B1, P1) PUSH {082, P2}
2 AT (OB1.PY) AT 082, P2)
0 1 2
TA-B973-15

Figure 13: GENERALIZED PLAN FOR TWO-PUSH MACROP

The delete function of an arbitrary STRIPS operator is specified by a delete-list consisting
of a set of literals. If the operator is applied to a state S, then STRIPS deletes from S
every clause containing a literal unifying {without regard to sign) with any member of the
delete-list. If a potential unification involves parameters, as it often does, then the
unification can be made only if it does. not contradict any.existing bindings of the
parameters to constants. To continue our example, suppose the second push operator is

applied to the parameterized state S:

AT(OBI, P1)
AT{OB?2, P3).

The delete-list of the second push operator, we assume, contains the single literal
AT(OB2, 8), where ‘8" unified with anything. If there were no existing bindings of
parameters to constants, then both clauses in S would be deleted. From figure 13, to the
contrary, we see that AT(OBI1, P1) was fiot deleted; hence, it must have been the case
that OB1 and OB2 represented distinct objects in the unparameterized problem for which
the plan was originally created. If in a subsequent attempt to use this plan we set OBl =

OB2, then we are violating the constraint responsible for the occurrence of AT(OBI, P1)

74

it the finul state. Accordingly, we replace the entry in eell (2,1) of Figure 13 by the new

entry:
(OB1 £ OB2) D AT(OBI1,P1)

13y this menns we indicate that row 2, and cell {2,1) in particular, produces the literal
AT{OB1. 1) only under the condition that OBl and OB2 are not instantiated to the

same constant.

The previous example illustrates how a literal can be allowed to survive the application of
- a delete Tunction only under some condition of the bindings of its arguments. We
introduced this notion in the context of maintaining the valiﬂity of a triangle table, but it
is more broadly applicable within the general framework of STRIPS. Although it is an
enlargement on our main theme of storing and using generalized plans, let us briefly

constder how the notion of conditional survival of a literal can be exploited.

During the planning process, STRIPS [requently permits a delete function to delete true
clauses from a state description. To overcome this tendency toward excessive deietions,

we make use of the notion of conditional survival as defined by the following aigorithm.

Let L{P1} be a literal in a parameterized state description, and suppose that the deletion
of the clause containing this literal depends on binding parameter P1 to another

parameter P2, Then:

e I P1 or P2 bas no constant binding then replace L{(P1) by P1 % P2 D
L{P1). (In “standard" STRIPS this clause would simply be deleted.)

e [['P! and P2 both represent the same constant in the original problem,
then delete the clause containing L(P1). (This is what STRIPS does as a
standard operation.) In the appropriate cell of the triangle table, place P1
#£ P2 D L(P1). (This generalizes the triangle table beyond the planning
states used by STRIPS.) If P1 and P2 represent distinct constants in the
original problem, then replace L{P1) by P1 % P2 O L{P1). (This is the

case illustrated by our previous example.)

We should note that the inclusion in a table of such clauses as, say, P1 #£ P2 O L(P1)
leads to certain complications. Suppose, in a subsequent problem, that STRIPS uses such

a clause in the proof of some precondition. Often, the proof will produce the unit clause

75

P1 = P2. In this case, we consider the proof completed by assuming P! 5% P2 (providing
the assumption contradicts no existing bindings). However, we must record this
assumption by placing P1 £ P2 in column O of the table being constructed; it is, after ali,
now a hypothesis of the theorem. Moreover, all subsequent proofs in the new plan must
not violate this hypothesis. As a bookkeeping procedure, we can conjoin the assumption
(viz., P1 5¢ P2) to ecach new precondition that STRIPS attempts to prove; this has the

cffect of preventing violations of our assumption.

b. Relaxing Preconditions in Nested Tables

Consider the situation shown in Figures 14(a) and (b), where we have shown a macro
operator MOP whose ith operator is itsell the macro operator OP,. As always, cell (i, i) of
MOP contains the complete add-list of OP;, while the marked entries of Row (i - 1)
constitute the support of the proof of the preconditions of OP;. During the planning
process, suppose STRIPS selects from one of the rows of MOP certain clauses it would like
to add to the current state of the world. Suppose further that some, but not all, of the
clauses in cell (i,i) of Figure 14(a) are marked. We can therefore mark in Figure 14{b)
those clauses in A; that are needed, and exercise the operator extraction algorithm on
table OP,. As we saw earlier, this will at times result in the deletion of some of the
clauses from PC;. Suppose, then, that some of the clauses of PC; are in fact deleted by
the operator extraction algorithm. This raises the possibility of deleting some of the
clanses in the support of PC; since they now need to support only a weaker theorem. If
the support of PC; can be weakened—that is, if some of the clauses in row (i - 1) can be
unmarked—than in general we may be able to delete more steps from MOP and/or obtain

weaker, more casily established, preconditions for MOP.

In order for this scheme of precondition relaxation to be feasible, we need an economical
solution to the following abstractly stated problem: Given that a set of ciauses C, - Cy

implies a theorem T M ... NT, which C,’s can be deleted from the premises il a selected

m’
subset of the T,'s are deleted from the theorem? Fortunately, it is possible to soive this
problem by appropriately labeling literals during the refutation proof of the theorem. We
will not elaborate here on the details of this bookkeeping procedure. In terms of the
example of Figures 14(a) and (b) the important point is that the bookkeeping need be
done only once, namely, when PC, is shown to be a consequence of its support.
Thereafter, it is a straightforward matter to compute, without recourse to theorem

proving, the appropriate relaxation of the support of PC, given a relaxation of PC,; itself.

76

MOP
I
Do SUPPORT
OF PCi
I or.
I
i | Ai
I
e e
I I |
| ' I
I ' !
I I
| | r
0 i
{a}
oP.
1
0
PG, —
1
]
2 Ai
t
!
0 1 2

{b)
TA-B973-15

Figure 14: MOP: A NESTED MACROP*

*From [11}, page 69.

77

The ability to relax preconditions leads to an obvious refinement of the operator
extraction alzorithm described earlier. Previously, we unmarked clauses only when a
component operator was deleted from a macro operator, in which case the entire support
of the precondition of that operator was unmarked. Now we can also unmark a subset of
the support of a component operator still retained in the macro operator. Finally, we
remark that although Figure 14 shows only two levels of tables, the procedure for relaxing
preconditions can be implemented recursively; hence; nested tables to arbitrary depth can

be readily processed.
D. Monitoring the Execution of Plans

In this section we outline an algorithm for using triangle tables to monitor the real-world
execution of generalized plans. An important feature of the algorithm is that it monitors
only those effects of operators, and only those aspects of the world, relevant to the

problem solution. Additionally, the algorithm embodies a modest replanning capacity in

the form of an ability to reinstantiate parameters of operators.

The pian execution algorithm rests on the observation that a triangle table contains
complete information about the internal structure of the plan it represents. More
specifically, a triangle table specifies exactly what each operator accomplishes in terms of
providing support for the preconditions of subsequent operators or the goal statement.
Equivalently, a triangle table aiso specifies the conditions that must obtain in order for a
component operator to be applicable.* The plan execution algorithm to be described uses

this information in a straight-forward manner.

Important information about the internal structure of a plan is embodied in the kernels of
a triangle table: The ith kerpel of a triangle table for an n-step plan is the [argest
rectangular subarray containing cells (n,0) and cell (i-1,i-1). [n Figure 10, by way of an
example, we have outlined the second kernel of MACROP. The importance of the ith
kernel stems from the fact that it contains the support of the preconditions for the tail of
the plan—that is, the the operator sequence OP; ,...,OP,. This should be clear, since row
j of the iR kernel contains that portion of the support of F’Cj_‘_1 that must already-be
true when OP; is executed. To continue with the example of Figure 10, cells (2,0} and

*Strictly speaking, a triangle table specifies the support for the particular proof of a precondition
found by STRIPS. In general, there are many possible supports for a given precoadition, but we
would not expect a plan execution algorithm to be cognizant of them.

78

{2.1) contain those axioms io PCa that are presumably true before OP2 1s executed. If
any of these axioms are false, then even perfect execution of OP, will not result in a state
in which OPj is applicable. Roughly speaking, then, a reasonable plan execution
algorithm should find the highest indexed kernel with all true entries and execute the

corresponcding component operator.

Such an algorithm would reflect the heuristic that it is best to execute the *legal”

operator least removed from the goal.

An important refinement of the rough execution algorithm outlined above can be obtained
by noting that the ith kernel contains in general not only those clauses supporting proofs
of preconditions but many additional clauses as well. These additional clauses are
irrelevant to the problem at hand, and we would certainly want our execution algorithm
to ignore them. The identification of relevant clauses is easily accomplished using the
opcrator cxtraction algorithm previously described. The final row of the table
representing a plan to be executed contains the support of the goal formula, and the
supporting clauses are marked as before. The operator extraction algorithm then
procluces a new operator for achieving those clauses. (We dispense with the computation
of precondlition formula, add-list, and delete function.) Typically, but not necessarily, all
the component operators will be retained. More importantly, only some of the table
cotries will be marked, and these are the only portions of the kernels that need be

monitored.

The task of finding an efficient algorithm for finding the “highest true kernel’—that is,
the bighest indexed kernel with all marked clauses true—is of some interest in itsell. Our
algorithm for finding the highest true kernel involves a cell-by-cell scan of the triangle
table. Euclr cell examined is evaluated as either True {i.e., all the marked clauses are true
in the currcot model) or False. The interest of the algorithm stems from the order in
which cells are examined. Let us call a kernel “potentially true'" at some stage in the scan
if all evaluated cells of the kernel are true. The scan algorithm can then be succinctly

stated as:

Among all unevaluated ceils in the highest-indexed potentially true

kernel, evaluate the left-most. Break “left-most ties' arhitrarily.

The reader can verify that, roughly speaking, this table-scanning rule results in a left-to-

right, bottom-to-top scan of the table. However, the table is never scanned to the right of

79

any cell already evaluated as false. An equivalent statement of the algorithm is “Among
all unevaluated cells, evaluate'the cell common to the largest number of potentially true

1

kernels. Break ties arbitrarily.”” We conjecture that this scanning algorithm is optimal in
the sense that it evaluates, on the average, fewer cells than any other scan guaranteed

always to find the highest true kernel. A proof of this conjecture has not been {ound.

The plan execution algerithm described above is embodied in a computer program named
PLANEX [24]. When PLANEX is called to execute a table, it executes the component
operator associated with the highest true kernel. Typically, but not necessarily, this will
be OP,. When OP, completes its action, PLANEX rescans the table to find the highest
_ currentiy true kernel. Typically, but not necessarily, this will be Kernel 2, in which case
OP, is exccuted, and so {orth, until the goal kernel is reached. We emphasize, however,
that after each operator execution PLANEX may either call an earlier operator (perhaps
to rectily an error} or skip to a later operator (perhaps a stroke of luck rendered some
operators unnecessary). Furthermore, many arguments of predicates in the table are
parameters; PLANEX is free to instantiate these parameters in order to find a true
instance of the predicate. Thus, PLANEX is really searching for the highest-indexed
kernel an instance of which is satisfied by the current state of the world. This ability of
PLANEX to instantiate—and reinstantiate—arguments provides a modest replanning
capacity. Il the turn of world events produces a situation in which a solution has the
same form as a tail of the original plan, PLANEX will find it. If no tail of the plan is
applicable, then no kernel will be true, and PLANEX returns control to STRIPS to

replan.*

*From [11], pages 55-78.

BO

CHAPTER NINE

Experiments With Shakey

In this final chapter we illustrate the capabilities described so far by
gitving Shakey some specific tasks. The material reprinted below (from
[11]) is a description of planned ezperiments that were later carried out

and recorded in a film and videotape available from SRI [25].

Experiments

in this section we shall describe some experiments now being planned that will illustrate
several features of the robot system, which we call, informally, **Shakey.” Specifically
these will show how Shakey generates a plan to perform a task, and how it then uses part
of this plan later as a component of a plan for performing another task. Saving plans for
later use might be regarded as a form of learning. The experiments also show how the
various levels in Shakey's hierarchical control structure function to enable Shakey to

recover gracefully from several kinds of unexpected failures.
1. Shakey’s World and Model

We must first describe the environment in which Shakey operates and Shakey's model of
this environment. In Figure 15, we show a floor plan of some rooms and doorways in
wlich our experiments with Shakey will be conducted. We can place several large boxes
and wedge-shaped objects in these rooms; three boxes are depicted in room RCLK of
Figure [15]. Initially Shakey is in room RUNI. The doorways all have mnemonic names
indicating the rooms they connect; e.g., DMYSPDP connects RMYS and RPDP. Shakey's
model of this environment is represented by a set of formulas or axioms in the first-order
predicate calculus. The rooms, doorways, boxes, walls, and other entities occur as terms
in formulas that describe important properties of the environment. The axiom modet
representing the environment for the planned experiments is listed in Table 8. The room

names are mnemomics for properties of the physical environment:

81

RHAL = Hallway

RRIL = Rilla's office

RCLK = Room with the clock on the wall

RRAM = Room with ramp to hallway

RPDT = PDP-10 room

RUNI = Unimate room

RMYS = Mystery room, i.e., rcom with unknown contents.

The meanings of most of the predicate symbols are obvious. AT gives coordinate location
information referenced to the coordinate system of Figure 15. DAT gives information
about the probable error in this coordinate information. The RADIUS predicate is used
to give rough size information. THETA and DTHETA give information about Shakey's
heading and probable heading error, respectively. The UNBLOCKED predicate tells
which doorways are unblocked (i.e., free of obstructing objects such as boxes). The
predicate ROOMSTATUS is used to tell whether the contents of a room are known or
unknown. The model listed in Table 8 indicates that the contents of all rooms are
assumed to be known except for RMYS. By this we mean that Shakey knows that he will
never encounter any new objects except perhaps in RMYS. This knowledge is used to
guide certain picture-taking behavior, as we shall see later. The LANDMARKS predicate
gives the locations of various landmarks such as corners and doorjambs that Shakey can
take pictures of to update its position. The axioms at the end of the model in Table 6
(beginning with the predicate WHISKERS) give information about the status of various
lower-level motor and sensing activities, e.g., the status of the catwhisker switches and

camera control settings. (These were explained in Chapter Four.)

Altogether there are 170 axioms in the model initially, which makes this model quite Jarge

in comparison with those used by any previous automatic problem-solving systems.
2. Shakey’s Action Repertoire

In order to perform the tasks described below, Shakey has available a repertoire of ILAs.
(The operation of these ILAs is described in Chapter Five.) The problem-solving system,
STRIPS, must be aware of the properties of the available ILAs. Therefore each ILA is
represented for STRIPS by an operator with specilied preconditions and effects. These
operators and their descriptions are given in Table 7 using the add and delete lists

employed by STRIPS.
82

a0 ’-—
-
— RHAL
— RRIL
40 fu
r <
| x z
- - (s
o { o
- aoxo<>
30 - RRAM DRAMCLK
- BOX2
I 3
: =
i . b ACLK
I 3
— < 80X1
20 W
| OMYSCLK
*
— RMYS “ o
e ————
" I S
I a
- DMYSPOP
i
10 - | RPDP
(%]
IS “
= =
=
- = >
SHAKEY a
— RUNI
S I S I S TS O VT T U A A T Y T
o 10 20 30 a0
x — fest TA-8972-6

Figure 15: MAP OF SHAKEY'S EXPERIMENTAL ENVIRONMENT*

*From [11}, page 6.

83

AT(ROBOT,7,3)

DAT{ROBOT, 0,1,0,1)

INRDOM{ ROBOT , RUKI)

AT{BOXO, 34,32}

INROOM(BOXO , RCLK)
AT(BOX1,25,22)
TNROOM(BOX 1 ,RCLX)
AT(BOXZ,26,27)
TNROCM{ BOX 2 , RCLX)
SHAPE(BOXO ,BOX)
SHAPE(BOX 1, POX)

SHAPE(BOX2, BOX)
RADIUSLBOXO,1.7)
RADIUS{BOX1,1.3)
RADIUS{BOXZ,1.3)
DAT(BOXO,0.1)

DAT{ BOX1,0.1)

DAT(BOX2,0.1)
THETA(ROBCT , -90)
DTHETA{ROBOT, 1)
PUSHABLE(BOX 1)

PUSHABLE(BOX2)

UNBLOCKED(DRAMHAL , RKAL)
UNBLOCKED(DRAMMHAL , RRAM)
UNBLOCKED{DCLKRIL ,RRIL)
UNBLOCKED(DCLKAIL , RCLK)
UNBLOCKED(DRAMCLX , RCLK)
UNBLOCKED{ DRAMCLX , RRAM)
UNBLOCXED(DN YSRAM , RMYS)
UNBLOCKED(DWYS RAM , RRAM)
UNBLOCKED{ DNYSCLX , RCLK}
UNBLOCKED(DMYSCLK , RMY3)
UNBLOCKED(OPOPCLX , RCLX)
UNELOCKED(DPDPCLK ,APDP)
UNBLOCKED{ DNYSPDP , RPDP)
UNBLOCKED(DNYSPDP , RMYS)
UNBLOCKED(DUHIMYS , RMYS)
UNBLOCKED(DUNIMYS ,RUNT)
BOUNDSROCM(FSRAM RRAM SCAITH)
BOUNDSROOM{ FERAK RRAM EAST)
BOUNDSROOM{FWRAM RRAK WEST)
BOUNDS ROOM{ FNCLX RCLX NORTH)
BOUNDSROOM(FSCLX RCLX SOUTH)
BOUNDSROOM(FECLK RCLX EAST)
BOUNDSRCOM(FWCLX RCLX WEST)
BOUNDSROOM(FRMYS RMYS NORTH)
BOUNDSROOM(FSMYS RMYS SOUTH)
BOUNDS ROOM{ FEXYS RMYS EAST)
BOUNDSROOM(FWNYS RMYS WEST)
BOUNDSROOM{ FNPOP RPDP NORTH)
BOUNDSROOM(FSPDP RPDP SOUTH)
BOUNDSROOM(FEPDP APDP EAST)
BOUNDSROON(FWPDP APDP WEST)
BOUNDSRCOM{ FMUNI RUNI NORTH)
BOUNDSRCOM(FSUNI RUNI SCRITH)
BOUNDSROOM(FEUNI RUMI EAST)
BOUNDSROOM(FWUNI RUNI WEST)
PFACELOC(FNHAL 30.0)
FACELOC(FSHAL 15.5)
FACILOC(FEHAL 18,.200000)
FACZLOC(FYHAL 11,200000}
FACELOC(FNRIL 49.0)

Table 8: AXIOM MODEL

B4

FACELOC{FSRIL 35,400000}
FACELOC(FERIL 36,800000)
FACELOC(FWRIL 18,799998)
FACELOC(FNRAM 35.5)
FACELOC(FSRAN 24 .0)
FACELOC{FERAM 18,200000)
FACELOC{FWRAM 0.0}
FACELOC{FNCLX 35.0)
FACELOC{FSCLX 15.200000)
FACELOC(FECLK 36 .B00000)
FACELOC({ FYCLK 18,59999T)
FACELOC{ FXMYS 23,599997)
FACELOCIFSMYS 7 .5000000)
FACELOC(FEMYS 18,200000)
FACELOC{F"dY5 0,0)
FACELOC(FNPDP 14 ,799998)
FACELOC{FSPDP B,2000000)
FACELOC{FEPDP 36 .KDOODO}
FACELOC({F¥WPDP 1& 600000)
FACELOC{FNUNI 7.1999999)
FACELOC{FSUNI 2.1899998)
FACELOC{FEUNI 17.200000)
FACELOC(FSUNI ©0.0)
JOINSROOMS(DRAMHAL RRAM RHAL)
JOINSROOMS (DRAMCLX RRAM RCLX)
JOINSROOMS (DCLXRIL RCLX RRIL)
JOINSROOMS {DRAMMAL RMAL RRAM)
JOINSROOMS(DRANCLX RCLX RRAM)
JOINSROOMS (DCLKRIL RRIL RCLX)
TYPE(BOX1 OBJECT)

TYPE{ BOX2 OBJECT)

TYPE(BOXO OBJECT)

TYPE(RHAL ROCM)

TYPE(RRIL RDCM)

TYPE(RRAM ROOM)

TYPE{RCLX ROOM)

TYPE(RMYS RDOM)

TYPE({RPDP ROCM)

TYPE(RUNI ROOM)

TYPE(DRAMMAL DOOR}
TYPE(DRAMCLX DOOR)
TYPE(DCLXRIL DOOR)
TYPE{DMYSRAM DOCR)
TYPE(DMYSCLX DOOR)
TYPE(DKYSPDF DOCR)
TYPE(DPDPCLX DOOR)
TYPE(DUNIMYS DOOR)
BOUNDSROOM(FNHALL RMAL MORTR)
BOUNDSROOM(FSHAL RHAL SOUTH)
BOUNDSROOM(FEKAL RHAL EAST)
BOUNDSROCM{ FWHAL RHAL FEST)
BOUNDSROOM{ FKRIL RRIL NORTH)
BOUNDSROCM(FSRIL RRIL SOUTH)
BOUNDSROOM(FERIL RRIL EAST)
BOUNDSROCGM{ FXRIL RRIL WEST)
BOUNDSROOM({ FNRAM RRAM NORTH)
JOINSROOMS{DMYSRAN RNYS RRAM)
JOINSROOMS (DMYSCLX RMYS RCLK)
JOINSROOKS(DMYSPDF RWYS RPDP)
JOINSROOMS (DPDPCLK RPDP RCLK}
JOINSROOMS{ DUNIMYS RUN1 RMYS)
JOINSFACES{DRAMHAL FNRAM FSHAL)
JOINSFACES{DRAMCLK FERAN FWCLX)

TABLE: 8, continued

85

JO{NSFACES(DCLKRIL
JOINSFACES(DNYSRAN
JOINSFACES (DMYSCLK
JOINSFACES(DMYSPDP
JOINSFACES{DPDPCLK
JOINSFACES(DUNIMYS
DOORLOCS{ DRAMHAL

FNCLK
FNMYS
FEMYS
FEMYS
FNPDP
FNUNI
11,200000 18,200000)

FSRIL)
FSRAM)
F¥CLK)
F¥PDP)
FSCLK)
FSMYS)

=1.)
1)

2.)
1.))

a.)

=-1.)
-1,
0.}
0.)

0.}

DOCRLOCS (DRAMCLK 26,799998 12,0}
DOGRLOCS{DCLKRIL 21 ,700000 24.799998)
DOORLOCS (DMYSRAM 10.0 15,200000)
DOORLOCS (DMYSCLK 16200000 20,793998)
DOCRLOCS (DMYSRDP 9,7000000 14.799998)
DOORLOCS{ DPDPCLX 25,.799998 30,7939398}
DOORLOCS{DUNIMYS 10,799998 16.0)
ROCMSTATUS{ RAAL KNOWK)
ROCMSTATUS(RRIL XNOWN)
ROCMSTATUS { RRAM KNOWN}
ROCGMSTATUS{RCLK KNOWN)
ROOMSTATUS{ FMYS UNKNOWN)
ROCMSTATUS(RPDP KNOWH)
ROCMSTATUS(RIFL KNOWN)
LANDMARKS{ RHAL (COORDS (4, 11.200000 35.3 0.)))
LANUMARKS(RRIL
{COORDS {4, 21.,700000 33.,400000
(3, 24.799998 33 400000
(2. 18,799998 49.0 4,)
(2. 36.800000 49.0 3.)
(2. 36.800000 33,400000
(2. 18,799598 33 ,.400000
LANDMARKS { RRAN
(COORDS (4, 18,200000 28_7995998
(3. 18,200000 32,0 0.)
(1. 11,200000 33,3 2.}
(4. 10,0 24,0 =1)
(3. 15.200000 24.0 =-1,)
{2, 0.0 33,5 4.)
(2. 18,200000 24.0 2.)
(2, 0,0 24,0 1)))
JOINSROOMS (DMYSRAM RRAM RMYS)
JOINSROOMS (DMYSCLK RCLK RMYS)
JOIMSROOMS{DMYSPDP RPOP RMYS)
JOINSROOMS(DPDPCLK RPDP RCLX)
JOINSROOMS{ DUNIMYS RUNI RMYS)
LANDMARXS (RCLX
(COORDS (4, 24,799998 35.0 =1.)
(3, 21.700000 33,0 -1.)
(4, 25,799998 15.200000
(3, 30,79999A8 13,200000
(4. 18,599997 20,799998
(3, 18,399997 16.200000
(4. 18,%9993T7 32,0 0.)
(3, 18,3999857 26,799988
(2., 18,599997 35.0 4.)
(2. 36,800000 33.0 3.)
(2., 38800000 13,200000
(2, 18,399997 13,200000
LANDMARKS { RMYS
(COORDS (4. 18,200000 9,7000000
(1. 18,200000 14,799998
(4, 18,200000 16.200000
(3. 18.200000 20,799998
(4, 15,200000 23,399997
{3. 10.0 23,599997 -1,)

TABLE 6, continued

86

(4. 10799998 7.6000000 <1.)
t3. 16.000000 7,6000000 -1,)
(2. 0,0 23,599997 4.)
(2. 18,200000 23,599997 3.}
(2. 18.200000 7.60000060 2.}
{2, 0.0 7,6000000 1.}))

LANDMA RKS (RPDP

(COORDS (4. 30,79999% 14.799998 -1.)

(3, 25.799996 14,799998 ~-1,)
(4. 18,200000 14,799998 =1.)
(3. 18.600000 9,7000000 0.)
(2. 36.800000 14,798998 3.)
(2. 36.800000 B, 2000000 2,)1)

LANDMARKS(RUN L

(COORDS (4. 16,000000 7.1999999 =1.)

(3. 10,799998 7.1999993 =1,)
{2, 16,0 7,199999% 3.0)
(2. 17.200000 2,1999998 2.,)
(2. 0.0 2.1988998 1.}))

WHISKERS{ROBOT ,0)

IRIS{ROBOT,1}

OVERIDE(ROBOT,0)

RANGE(ROBOT ,30)

TVNCDE{ ROBOT , 0)

FOCUS{ROBCT, 30}

PAN(ROBOT,0)

TILT(ROBOT,0)

DPAN(ROBOT ,3,12)

DTILT(ROBOT,0.7)

DIRIS(ROBOT,0)

DFOCUS(ROBOT, 0)

PICTURESTAXER(ROBOT, 0)

JUSTBUMPED(ROBOT , RIL)

TABLE 6, concluded

87

We shall now describe the planned experiments that will use the model of Table 8 and the
operators shown in Table 7. The description will be in terms of the expected results of

these experiments.

a. Task 1

Starting with the configuration of Figure 15 (represented by the model in Tuble 6),
Shakey will perform two tasks. Each of these tasks is stated in English and entered into
the system via teletype. The first task is stated as "USE BOX 2 TO BLOCK DOOR
DPDPCLK FROM ROOM RCLK." This statement is converted by the English language
system ENGROB [26] to a goal expressed by a well-formed formula (wff) of the first-order
predicate calculus: BLOCKED(DPDPCLK,RCLK,BOX2). The STRIPS problem-solving
system is then called to compose a sequence of operators whose execution will create a
world mode! in which this goal wff is true. In terms of the operators in Table 7. we can

show that the following sequence would solve this problem:

GOTO2(DUNIMYS),GOTHRUDR(DUNIMYS,RUNLRMYS),
GOTO2(DMYSCLK),
GOTHRUDR(DMYSCLK,RMYS,RCLK),
BLOCK(DPDPCLK,RCLK,BOX2)

Rather than generating this specific solution, STRIPS generates a generalized plan that
involves going from an arbitrary initial room through an intermediate room, and into a
third room and then blocking a doorway in the third room. The rooms, doorways, and
blocking object in this generalized plan are represented by parameters. The generalized
plan is thus a subroutine whose arguments are the parameters. These arguments are
bound to specific constants only when the plan is executed. The value of the generalized
subroutine is that it can be stored away (or ‘‘learned") and then used again in other

situations perhaps as part of a plan for a more complex task.

88

Precanditions:

INRUOM(ROBOT ,RX) A INROOM(X, RX}
A PUSHABLE{BX)} A UNBLOCKED{(DX,k X}
A (ARY)JOINSROOMS (DX RX , RY)

Delete List:

AT{ROROT,51,52)
AT(EX,31,52)
UNBLOCKED{ DX , RX)
NENTTO(ROBOT,$1)
NEXTTO(BX ,51)
SEXTTO(S 1, ON)

Add List:

*BLOCKED(DX , R, BX)
NEXTTO(ROBOT , BX)

Blocks doar DX with an object BX by pushing B to a place in reom RX directly in
front of door DX,

UNELOCK({DX RN BX)

Preconditions:

BLOCKED(DX ,RX,8Y) A INROOM(ROBOT,RX) A PUSHABLE(EX)

Delete Ligt:

AT(ROBOT,S1,$2)
BLOCKED(DX ,RX , BX)
AT(BX,$1,52)
NEXTTO({ROBOT, $1)
NEXTTO(EX,S1)
NEXTTO(S1 ,BX)

Add List:

=UNBLOCKED (DX, RX)
NEXTTO(ROBOT, BX)

Unblocks door DX by pushing object BX awsy [rom its plsce in room RX directly in
front of door DX,

GOTHRUDR(DX ,RX ,RY)

Preconditions:

NEXTTO(ROBOT ,DXY A INROOM{ ROBOT,RX}
A JOINSROOMS(DN ,RX,RY) A UNHLOCKED(DN,RX)
A UNBLOCKED(DX ,RY)
Delete Ligt:
AT{ROBOT,S1,52)

FEXTTOLROBOT, S 1}
INROOM(ROBOT ,51)

Table 7: STRIPS OPERATORS

89

Add List:

* [NROOM(RODOT, RY)
NEXTTO(ROBOT, DX)

Takas Shakey through door DX from rovom RX into room RY,

GOTQ2{X)
Precoanditions:

{ TRX) { (NROOM{ROBOT ,RX) A [NROOM(X,RX)]
Y (3RX,RY) [[NROOM{ ROBOT , RX)
A JOINSROOMS(X,RX,RY) A UNBLOCKED(X,RX)]

Dalete Liat:

AT{ROBOT,$1,52)
NEXTTO(ROBOT, $1)

Add List:
*NEXTTO(ROBOT X)

Takea Shakey from any polnt in a room to a location next to any object or doorway, X,

in the same room, (Shakey will pavigete around obatacles that might be ln the way of
a direct path.)

PUSH(OB.X Y}

e ————

Preconditione:

{IRX) [INROOM(ROBOT ,RX) A
INROON(0B,RX) A LOCINROOM{X,Y,RX)]
A PUSHABLE(0B)

Delets List:

AT{ROBOT,$1,3%2)
NEXTTO(ROBOT 31}
AT(0B,S1,32)
NEXTTO(OB,51)
NEXTTO(S$1,0B)

Add List:

*AT(OB,X,Y)
NEXTTO(ROBOT ,0B)

Pushes object OB from one point in a room to a coordinate locetion (X,Y) in the 1ame room,
(Shakey muat lnitlally be in the same room aa OB and (X,Y), but will push OB around obstaclaee
that might be ln the way of a direct path.}

NAVTO(X Y}

Preconditlons:

(IRX) [INROOM{ ROBOT ,RX)
A LOCINROOM(X,Y,RX)]

TABLE 7, continued

90

Delete List:

AT(ROBOT 51,527
NEXTTO(ROBOT.S1}

Add List:

«AT(ROBOT,X,Y}

Takes Shakey f{rom any point in 3 room to the coordinate location {X,Y) in the same room,
(Shakey will navigate around obstacles that might be in the way of a direct path.)

POINT{DIRECTION)
Preconditions:
none
Delete List:
THETA{ ROBOT,S1)
Add List:
*THETA(ROBOT ,DIRECTION)
Turns Shakey 80 that its heading is DIRECTION,
PUSHI(08B,X)
Preconditions:

PUSHABLE(OB) A I(RX){ IHROOM(ROBOT,RX) A IMRDOM(OB,RX)
A [INROOM(X ,RX) v T(RY)JOTNSROOMS(X, RX,RY))}

Delete List:

AT(ROBOT,$1,32)
NEXTTO(ROBOT,$1)
AT(0B,51,32)
NEXTTO(0S,$1)
NEXTTO:S1,08)

Add List:

*NEXTTO(OB, X}
HEXTTO(ROBOT ,0B)

Pughel cbject OB from one point in = room to a locstion next to any object or doorway X
in the same room, {(Shakey will push OB around obstacles that might be in the way of a

direct path.)

-
MNote: An asteriak{®) ip fropt of ap add=-list clause indicates that this clause (g one of
the “primary effects" of the operator, :

TABLE 7, concluded**

**From [11] pages 18-15.
91

The task in question elicits the {ollowing generalized plan from STRIPS:

GOTO2(PARS),GOTHRUDR(PARGS,PAR7,PARS,)
GOTO({PAR#4),GOTHRUDR(PAR4,PARS,PAR2),
BLOCK(PAR1,PAR2,PAR3)

This plan is stored away as the macro operator:
MACROP1{PAR3,PARL,PAR2,PAR4,PARS,PART,PARS)

STRIPS creates a triangle table representation of MACROPI1. This table compactly
stores information vital to monitoring the execution of MACROP1 and information
neecded to use MACROP] (or parts of it) as a component of a future plan. We show this
triangle table representation of MACROPI in Table 8* and refer the reader to Chapter

Eight for a discussion of triangle tables and their uses.

After the creation of the triangle table representation of MACROPI, STRIPS prepares a
verston of it that will solve the given task, namely, to “Use BOX2 to bleck door DPDCLK
from room RCLK." This version is obtained from MACROP1 by replacing those
parameters standing for constants in the goal wff by those constants. That is, in this
case, we replace PAR1 by DPDPCLK, PAR2 by RCLK, and PAR3 by BOX2 throughout
the MACROP]1 triangle table. This instantiated table is then given to PLANEX for

execution.

PLANEX is a program that supervises the execution of those ILAs corresponding to the
operators in the plan. For a discussion of the operation of PLANEX, see the last part of
Chapter Eight. PLANEX takes as input a partially instantiated MACROP in triangle
table form. (This MACROP may have some parameters remaining after those occurring
in the goal wif have been instantiated.) The PLANEX algorithm looks for a specific, fully
instantiated subsequence of the operators in the MACROP that can be executed in the
present situation to achieve the goal. The ILA corresponding to the first operator is then
executed. In the case of the task we are considering the first ILA to be executed is
GOTO2(DUNIMYS), which causes the robot to go to the door named DUNIMYS.

Note: For all triangle tables, an asterisk () before a clause indicates that this clause was used to
prove the preconditions of the operator named at the right of the row in which the clause
appears,

92

(e¥vd ' 2uvd ' luvdonDold
(CHVd ' LOAOH YOLLX3H

(ZU¥d’ LOGOH YNCOUN]

(Cuvd‘ zuvd "’ 1avd 1LOE

(ruYd" 1000H)OLLYEIN
(Zuvd' LOBOY IRDOYUN] »

(8YVd ' TuVd’ 1HVA)SHOOUEHIOT +
(CHYd)TTUVISAd e

(ZHVA'CHVA JWCOUN) = (CHYd ' LOUCHY Yir—e

(ZU¥d’ 1UY4 }QINIOTONA
(CHvd’ LogoH -

(Zuvd‘suvd‘ vuvd WanyILon

(vuVd* L080Y)0LLXIN (5HYd" LOA0H INOOUN] »

{zuvd' FHYd)ODDOTONN *
{Z4vd ' cuVd' FHVdISHOOUSHIOL »
(Suvd' pUYSIAINIONTHN >

{ZHVd" UV ¥HYI)SHOOUSHIOD
(SHYd' P HVA)ADU TGN«

(Fuvd)z0LOD
{OHYJ’ 10004 HOLLXIH
(SHYd" LOUOH HHOOUNI »
(SHUVYA’ LHVd OMVJ HANUHLOD

{SHVd " 94 Vd JaINIOTANNe
(SHYA' LHYd ' 9UVYd)SHOOUSHIOT e

(LHV4 " L0T0Y JMOOUN I »
(OHYd" LOADY JOLLYAN (2YVd* UV }OINIOINNe"
{eu¥d)zoloD (LHVd' LOGOH JNOOUND »

(OUV4' LUV CHVYd ' YUY EHVd ' THVA' CHYA)L 4OHDVW HO4 FTIVL FIDNVIHL

{(SUVd' LUV 9HYd ISHOOUSHIGT»
(LUVd 9V)TIADOIEHN

Table 8¢ TRIANGLE TABLE FOR

*
<O
et
=
p"
bt~
ol
<
P’
)
o
<
o
-
o
<
p"
5
a
o
<
o,
[yp]
o
<
&
o
Q
o
(]
e
p

93

*From (11}, page 17.

The PLANEX algorithm then determines that the next ILA to be executed should be
GOTHRUDR(DUNIMYS,RUNI,LRMYS). Execution of this ILA begins by calling the vision
routine CLEARPATH, which takes a TV picture through the doorway to determine
whether the path in RMYS is clear (since the contents of RMYS are unknown). The path
is in fact clear, so Shakey proceeds through the doorway.

Next PLANEX ealls for the execution of GOTO2(DMYSCLK). Since the contents of
RMYS are unknown to Shakey, GOTO calls CLEARPATH again. To illustrate how
Shakey can deal with unforeseen difficulties, we now place a box directly in Shakey’s path
in front of the door DMYSCLK. As Figure 15 and Table 8 show, Shakey does not know
of the existence of this box. CLEARPATH determines that the path is blocked and notes
the approximate location of the blocking object. Since Shakey expect;s that it might
encounter unknown objects in rcom RMYS, GOTQ next calls a vision routine called
OBLOC. This routine calculates the size and exact location of the object, gives it a name,
BOX3, and adds this information to the model. (it also assumes, perhaps optimistically,
that the new box is pushable.) OBLOC also notes that BOX3 is blocking door
DMYSCLK, so it adds the w{f BLOCKED(DMYSCLK,RMYS,BOX3) to the model. Since
the conditions for continuing the execution of GOTO(DMYSCLK) are no longer satisfied,
control returns to PLANEX. Our interest in this experiment is to show how Shakey can

gracefully recover {rom such an unexpected failure of its plan.

PLANEX, as usual, attempts to find a fully instantiated version of the parameterized
MACROPI that can be executed in the present situation to achieve the goal. In this case,
PLANEX [inds another instantiation of MACROP1 that works. The operators in this

instantiation are:

GOTO2(DMYSPDP),GOTHRUDR(DMYSPDP,RMYS,RPDP),
GOTO2(DPDPCLK),

GOTHRUDR(DPDPCLK,RPDP,RCLK)
BLOCK(DPDPCLK,RCLK,BOX2).

Here we see one of the advantages of constructing parameterized plans. To perform the

original task, we first constructed a parameterized plan having an instance that solves the
problem. Later in the task execution we find that after an unexpected difficulty, another
instance of the same parameterized plan can be used to achieve the goal. We expect that

this method of error recovery will be quite valuable in robot problems. (If PLANEX could

94

find no applicable instance of MACROPI that would achieve the goal, then STRIPS
would be asked to produce auother plan and MACROP.)

After finding this pew instancé of MACROPI1, PLANEX calls for the ¢xecution of the first
operator GOTO2(DMYSPDP). Shakey thus moves to door DMYSPDP. PLANEX next
culls for going through the door, and the process continues until finally Shakey enters
room RCLK. Then PLANEX calls for the execution of

BLOCK(DPDPCLK ,RCLK,BOX2). Running this [LA calls for going to BOX2 and
pushing it around BOX!1 and then to door DPDPCLK (a *‘two-leg’ push). The local
planning needed to accomplish this push operation is done entirely within the PUSH [LA
called by BLOCK. With this operation complete, Shakey has accomplished the first task,
in spite of the unforeseen difficulty. We also ﬁote that MACROP! bas been filed away

and can be used as an operator in future problem solving.

b. Task 2

The state of things in Shakey's world is now as shown in Figure 16. We now test
Shakey's ability to learn by giving it a task that can be solved by using part of
MACROP1. The statement of the task given to the system, in English, is “UNBLOCK
DOOR DYMSCLK FROM ROOM RMYS."” That is, we want Shakey to move away the
object (BOX3) that it discovered to be blocking DMYSCLK.

Again, the English statement is converted into a predicate calculus wif:
UNBLOCKED{DMYSCLK,RMYS).

STRIPS now attempts to find a sequence of operators that will make the wff true, but
now it has MACROPI available in its operator repertoire {in addition to the operators
corresponding to ILAs). STRIPS first decides that it should try to apply the operator
UNBLOCK(DMYSCLK,RMYS,BOX3). To do so, Shakey must be in room RMYS, so

STRIPS looks for operators that will achieve INROOM(ROBOT,RMYS]).

STRIPS determines that an instance of the GOTHRUDR operator will work, but so also
will subsequences of MACROP1. One subsequence consists of the first two operators in
MACROPI and the other consists of the first four. (For a discussion of how STRIPS
makes selections of MACROP subsequences, see Chapter Eight.) Since an instance of a
sequence of the first four operators in MACROPI is both applicable in Shakey’s present

95

o
—
B AHAL
_ ARIL
‘o_—
- 2 .
L T <
E — B —
_ aoxo<>
30 [~ ARAM DRAMCLXK
, = ACLK
F - =
- o
T
| ~==]
I
. - 3 BOX1 SHAKEY
m—
BOX 3 DMYSCLK
P~ BOX2
u AMYS &__——.'_—_l = e
|3]
e 1 o
' 2
DMYSPDP =
[~]
i
i RPDP
10 -
@ L
% =
. =
- =
o
RUNI
0[- SR NS R WU T SR N AN TSR N N SN NN S N M S
0 10 20 20 40
x — feet
TA-8973-7

Figure 18: MAP OF SHAKEY'S WORLD AFTER COMPLETION OF THE FIRST
TASK*

*From [11], page 21,

96

situation and achieves the condition INROOM{ROBOT,RMYS), STRIPS is quickly able to
settle on this instance and produce 2 plan for Task 2. Let us denote by MACROP1” the
subsequence of MACROP] selected by STRIPS. MACROP1” still contains free
parameters that are feft to be bound at execution time. Its definition in terms of the

operators comprising it is:

MACROP!’ (PAR2 PAR4.PAR5,PART.PARG)

GOTO2(PARS)
GOTHRUDR(PARG,PAR7,PARS)
GOTO2(PAR4)
GOTHRUDR(PARS,PAR2)

The complecte generalized plan for the second ask is:

MACROP1‘ (PAR2,PAR4,PAR5,PAR7,PARS)
UNBLOCK{PAR1,PAR2,PAR3)

This generulized plan is given the name MACROP2 and is saved for possible later use.
The triangle table representation of MACROP2 is shown in Table 8.

After creating the general version of MACROP2, STRIPS prepares a version of it for
PLANEX by instantiating it with those constants appearing in the task description.
Namely, DMYSCLK is substituted for PAR] and RMYS for PAR2. It then gives this
partially instantiated version to PLANEX to be executed. PLANEX finds that the

following instantiation of the plan will achieve the goal:

MACROP1’ (RMYS,DMYSRAM,RRAM,RCLK . DRAMCLK)
UNBLOCK(DMYSCLK,RMYS,BOX3)

Next, PLANEX calls for execution of MACROP1’. This execution is accomplished by
PLANEX itself. The ability to handle ‘“nested"” triangle tables is one of the features of
our system. PLANEX discovers that the first ILA to be executed in MACROP1 " is
GOTO(DRAMCLK).. In a similar manner, PLANEX ultimately executes the entire string
of ILAs in MACROP1 " and then the UNBLOCK ILA to accomplish the second task.

97

(ZUVd TUVd)IQIHO0TENN
(c4vd ‘ LOGOY) OLLXAN (24 Vd ‘“ LOTOY YWOOHUNT
(cuvd‘ Zuvd ‘ Tuvd) HO0TaNN
(YHVd ‘ LOEOY JOLLXAN
(24 Vd ‘ LOTOY YHOOUNT * (EUVd‘ 2UVd* TUVd)AINI0TH +

(9uVd‘ Luvd‘cuvd‘ yuvd ‘2uvd), TdOHOYW

(Zuvd‘ puvd)@IND0TINN +
(5UVd ‘ pHVd)TINDOTINN+

(2UVd ‘ SUVd LU Vd)SWOOUSNTOL *
(SUVd 9UVd)QINIOTANN «

(SHVd LUVd ' 9UVd) SHOOUSNIOL &
(LUvVd 9UVd)AIHOOTANN *

(24 vd ‘ 10G0U YNOOUN] «

(ZUVd pUVd cuvd “ LUVd ‘9UVd ‘ TUVd ‘ €UV)ZdOHOVW HOd FTGVLI FTONVIHL

Table 8: TRIANGLE TABLE FOR
MACROP2(PAR3,PAR1,PARS,PAR7,PARS,PAR4,PAR2)*

98

*From [11f, page 28.

When these experiments are actually conducted, it is probable that the system may decide
to exercise another one of our error-recovery capabilities. Recall that the model contains
information about the prohable error in Shakey’s location stored in the predicate DAT.
Model-maintenance programs automatically increase the estimate of error after every
robot motion. During execution of ILAs such as GOTO2, this probable error is checked to
sce whether it 1s still less than some specific tolerable error. Whenever the error estimate
excceds the tolerance, a visual program called LANDMARK is called. LANDMARK takes
a picturc ol some nearby feature (such as a joorjamb), calculates from this picture the
robot’s actual lucation, and enters this updated location into the model. It also resets the

DAT predicate to the error estimate appropriate after having just taken a picture.

Several features of the system are illustrated in these experiments. Most important of
these are the ability to {earn generalized plans and the ability to recover from various
types of failures. The system of ILAs is designed to be robust in the sense that each ILA
does what it can locally to correct any errors, When the appropriate recovery procedures
are beyond a specific ILA’s knowledge and abilities, there are several higher levels where
recovery can occur, namely, at higher level ILAs, in PLANEX, or in STRIPS.*

*From 11}, pages 5-24.

ACK NOWLEDGMENTS

Many people worked on the Shakey project. Charles A. Rosen, the
founder of the SRI Artificial Intelligence Center, first conceived of “an
intelligent autornaton project.”’ In an attempl to mention at least some
researchera, we have ezplicitly {tsted in the references to thias note all of
the authors of the Shakey technical reports (instead of using the usual
‘et al.’”’ convention.} We also gratefully acknowledge the Defense
Advanced Researeh Projects Agency who supporied the research described
here. A special note of appreciation ts due Dr. Ruth Davis who, as a
sentor official in the Defense Department of Research and Engineering,

had the vision to tnitiate this and other projects tn roboties.

101

Appendix A

Mechnical Development of the Automaton Vchicle

Appendix A

Mechnical Development of the Automaton Vehicle

By Vladimir Lieskovsky

The following note from [9] by Vladimir Lieskovaky described the robot

vehiele tn some deta:l:

MECHANICAL DEVELOPMENT OF THE AUTOMATON VEHICLE

A. General Arrangement of the Vehicle

At the beginning of the project, only very sketchy information was available about specific
requirements for the vehicle. The general requirements given were that the vehicle should
be able to maneuver on a linoleum-tiled laboratory floor, move on ramps that had up to a
ten percent slope, be not wider than a doorway, weigh not more than approximately 200
1bs, move under radio-transmitted digital-computer control, and be energized by an on-
hoard power source. It was further specified that the vehicle should be able to turn
around its own vertical centerline in either direction and be able to move both forward

and backward.

Accordingly, with this prescription we began with a rectangular platform. 3 ft in length
and 2 ft ip width, with the corners cut off at an angle. The platform was equipped with
four wheels mounted in a diamond pattern: two 8-in diameter rubber castor wheels, one
in front of the platform and one at the back; and two 8-in diameter rubber wheels,
coaxially mounted, one at either side of the platform. The coaxially-mounted wheels were
to be driven independently. One of the castor wheels was mounted on a spring-loaded
flange, which allowed that wheel to deflect, under load, out of the plane determined by
the other three wheels. In this way we achieved the compliance necessary to negotiate

slopes. The platform stands about 10 inches above the {loor level. The space provided

105

between the wheels accommodates the main drive motors, and for a low center of gravity,

the batteries.

A 4-in vertical distance above the platform was reserved for proposed manipulator arms.
A standard 19-in electronic rack, supported at three points, was located above this
reserved space, A video camera and range finder combination was mounted atop the

rack.

B. Details of the Physical Arrangement

1. Power Supply and Drive

One of the first decisions to be made was the selection of the form of energy to be used
for drive purposes. Among those considered were hydraulic, pneumatic, and eventually,
electric drives. Since electrical power had to be made available for the electronics, electric
drive was ultimately selected. The choice between secondary batteries and fuel cells was
dictated mainly by price and delivery figures in favor or the batteries. Two 12-voit
batteries in series were used to establish the operational, nominal voltage at 24 Vde. The
choice between drive motors was reduced to either a straight de motor, an inverter and ac
motor combination, or stepping motors. Complexity and control considerations of the
digital commands ruled out the inverter/ac combination. Direct current motors, although
electrically noisy, were attractive due to their high power density and good torque
characteristics. Manufacturer’s quotes were uniformly forbidding: six months for delivery
and a price in excess of several thousand dollars for each motor. The units would have
had standard clutches, brakes, and position readout capability for feedback information.
Stepping motors, although they suffer from low power density, are excellently suited for
digital control, and they were immediately available and were low in price {not more than
about $200.00 each). Therefore, the decision was made to use stepping motors exclusively
for prime movers. Not all of the motors selected were rated at 24 Vde, but they were

easily converted by using dropping resistors.

In order not to lose count of the steps in the drive train between the motor and the drive
wheel, the speed reduction between the motor and the wheels had to be one without
slippage, that is, positive. The reduction was necessary to increase available torque from

the motors and to reduce the amount of translation per incremental step of the motor to

108

1/32nd of an inch measured at the periphery of the wheel. For every control pulse, the
stepping motor executes a rapid change in its angular position. Depending on the inertia
of the driven load and the damping of the drive trains, oscillations may develop. These
oscillations were reduced by limiting the incremental stepsize, i.e., the generated
amplitude. A cogged belt, or timing belt, arrangement was sclected for the drive train.
This was to give the necessary positive drive, while also introducing damping. As it
turned out, the belt proved to be a secondary source of oscillations, since bending
vibrations were generated in the belt when the stepping motor was operated. Increasing

the belt. tension reduced the oscillations to an acceptable level.

2. Closing the Minor Loop Through the Motor

The stepping motor operates in an open loop mode. Completion of any step depends on
the inertial load coupled to the motor, and not unlike a synchronous motor, the stepping
motor also can *‘fall out of phase,' so to say, when it is overloaded. This condition is
largely a function of the stepping rate. Therefore, closing the loop in the operation of the
main drive motors seemed to be warranted. Fortunately, similar considerations led
Fredrikson [27] to synthesize, build, and describe a closed-loop stepping motor scheme.
By using his results, we were able to adhere to the ground rule of no nove! detail
development. We closed the minor loop through the motor in the following way: a disk,
containing fifty appropriate holes on a circle, was mounted on the motor shaft. Four light
source and photocell pairs placed along the circle, and shifted by one-fourth of the hole
pattern pitch, were mounted on the motor housing. This arrangement provided for 200
positions for every revolution, which is also the step-pattern of the motor. We used the
simple schematic, described in [27] to complete the feedback loop. In operation, no step
command can be given unti] after the information from the position feed-back disk
incdicates that the previous step has been completed. Simply, the motor cannot miss a
step.

3. Wheeis

The rubber wheels presented another problem: due to their finite elasticity, transient
motions generated either by the vehicle itself, or by its environment, resuited in disturbing
oscillations of the whole vehicle in pitch and roll modes with a time constant of about 2
seconds. This amount of settling time was judged to be unacceptable because no picture
taking with the TV camera could be initiated during that time. Since friction on the

driving wheels had to be maintained, but elasticity minimized, a properly-stiffened rubber

107

driviog rim on a metal wheel proved to be an acceptable solution. Since the castor
wheels, however, could remain relatively compliant, but required reduced friction on the

floor, they were capped with a metallic rim and gave good results.

The originally configured, independently-suspended castor wheel desigu gave way to a
scheme that provided easy handling of the batteries. The supply batterics are now
contained in a subcarriage, supported at three points. At one end of the subcarriage, one
ball-bearing is located at each of the two corners while at the other end is located the
vehicle's previously independently-suspended castor wheel. The batteries in the
subcarringe can be conveniently wheeled to and from a recharging station. When the
subcarriage is wheeled back to the vehicle, the ball-bearings are received by corresponding
ramps, which lift up the ball-bearings and lock them into proper position. The bearings
now act as pivots around which the subcarriage swings in a vertical plane. This freedom
of movement provides for independent suspension of one of the four wheels, The
distribution of the load on the vehicle is such that when the subcarriage is removed, the

rest of the vehicle is still statically stable on its remaining three wheels.

4. TV Camera and Range Finder Mount

Although it is possible to scan with a TV camera which is rigidly mounted on a vehicle
that is capable of turning around its own vertical axis, it seemed expedient to provide for
an independent panning capability. Thus, the TV-range finder combination is mounted
on a yoke that can be rotated by a vertically-mounted stepping motor. The yoke
accommodates a transverse, horizontal axis, around which the TV camera can be tilted.
The tilt drive train incorporates a worm drive and another stepping motor. The worm
drive is necessary to cope with the excessive tipping moments originating from a revised
version of the range finder. When the stepping motor is not in operation, the worm drive
provicles a self-locking feature as an added bonus. In the pan mode, limit switches and
stops are provided as well as an electromagnetic detent, acting on a 200-tooth zear,
mounted on the shaft of a 200-step/revolution stepping motor. Tbe yoke was designed for
these functions only. The shaft of the pan motor is coaxially mounted with the vertical
centerline of the vehicle; that is, if equal and opposite commands are given to the driven
wheels, the location of the pan motor shaft does not change. The TV camera is-located in
such a fashion that the photosensitive surface of its vidicon tube is exactly at the
intersection of the vertical pan axis and the tilt axis. Turning the vehicle about its
vertical axis, panning the camera, and tilting it, does not affect the location of the vidicon

surface, only its direction.
Y 108

It also seemcd expedient to attach the range finder directly to the TV camera. In this
way. the distance of an object, viewed by the optical centerline of the TV camera, from

the range-finder can be measured.

A scparate arrangement of the TV camera and the range finder was similarly logical:
distance-mapping of the surroundings could be accomplished while the TV camera could
“digest" and recognize a particular scene. However, the kinematic complexity of this

arrangement seemed prohibitive when compared to the possible advantages.

Stepping motors were mounted onto the TV camera lens housing for computer controlled
adjustment of the focus and the iris. Since these motors operate in the open loop mode,
step count may be lost. Therefore, separate limit switches for both focus and iris
functions and at both ends of their range are provided. Whenever the limit switches are
actuated, the counters are reset accordingly. This is also the scheme utilized in the pan

and tilt modes.

5. Tactile Sensors

Tactile sensors are mounted at the front and back and on both sides of the vehicle to
provide protection against damage to the vehicle and to its surroundings and to provide
touch information. These sensors were selected from commercially available
microswitches, and are actuated by a flexible coil spring approximately 6 inches long.
Piano wire whiskers or extensions may be added to the end of the coil springs to provide
longer reach. The guiding principle has been to sense the presence of a solid object within
the braking distance of the vehicle when it is traveling at top speed. Additional
appropriately placed sensors protect the TV camera against collision in the translational
and the rotational modes. The actuation of any sensor will inhibit the corresponding

action, while override is also made available.

As further protection against collisions, heavy rubber bumperstrips are mounted on all
protruding edges of the vehicle. If the performance capacity of the main drive motors

permits, these bumpers will be used to move objects around the environmental room.*

*From [8], pages 40-45.

109

Appendix B

Some Current Techniques For Scene Analysis

Appendix B

Some Current Techniquea For Scene Analysis

For completeness, we reprint below an SRI AI Center Technical Note by
Richard Duda [28] that deacribea some of the vision routines used by
Shakey.

Some Current Techniques for Scene Analysis

by
Richard O. Dudsa

I. Introduction

The purpose of the visual system is to provide the automaton with important information
about its environment, information about the Jocation and identity of walls, doorways,
and various objects of interest. By adding new information to the model, the visual
system gives the automaton a more complete and accurate representation of its world.
The role of vision is not independent of the state of the model. If the automaton has
entered a previously unexplored area, the visual scene must be analyzed to add
information about the new part of the environment to the model. ln this situation, the
model can provide so little assistance that it is ofter not referenced at all. On the other
hand, if the automaton is in a thoroughly known area, the role of vision changes to one of

providing visual feedback to correct small errors and verify that nothing unexpected has

happened. In this situation, the model plays a much more important role in assisting and

actually guiding the analysis.

Until recently our attention has been directed primarily at the general scene-analysis

problem. Every picture was viewed as a totally new scene exposing a completely unknown

area. More recently we have addressed the problem of using a complete, prespecified map
of the floor area to update the automaton’s position and help in tasks such as going
through a doorway. Another use of this kind of visual feedback would be the monitoring
of objects being pushed. '

113

[n trying to solve these problems, we have tended to take one or the other of two extreme
approaches. Either we tried to develop general methods that can cope with any possible
situation in the automaton's world, or we tried to exploit rather special facts that allow
an cfficient special-purpose solution. The first approach involves the more interesting
problems in artificial intelligence, but it provides more capabilities than are needed in
many situations, and provides them at the cost of relatively long computation times. The
sccond approach provides fast and effective solutions when certain (usually implicit)
preconditions are satisfied, though it can fail badly if these conditions are not met.
Eventually, of course, some combination of these two approaches will be necded, since the
automaton actually operates in a partially known world, rather than onc that is
completely unknown or completely known. However, we have decided to concentrate on
these two extreme situations before addressing the intermediate case. The remainder of

this note describes the current status of our work in these areas.*

II. Region Analysis

A. The Merging Procedure

Our work in general scene analysis is based on dividing the picture into regions
representing walls, floors, faces of objects, etc. The basic approach has been described in
detail elsewhere [18], and only a brief summary will be given here. The procedure begins
by partitioning the digitized image into elementary regions of constant brightness. This
usually produces many small, irregularly shaped regions that are fragments of more
meaningful regions. Two heuristics are used to merge these smaller regions togcther.
Both of these heuristics operate on the basis of fairly local information, the difference in
brightness along the common boundary between two neighboring regions. The heuristics
are not infallible; they can merge regions that should have been kept distinct, and they
can fail to merge regions that should been merged. However, they reduce the picture to a
small number of large regions corresponding to major parts of the picture, together with a

larger number of very small regions that can usually be ignored.

The effect of applying these heuristics is best described through the use of examples.

Figure B-1 shows television monitor views of three typical corridor scenes. Figure B-2

*Qur earlier work in scene analysis is described in |{7]. Additional information on more recent
work is contained in (8], [16], {29, and [30].

114

shows the results of applying the merging heuristics to digitized versions of these pictures.
The boundaries of the regions in these pictures are directed contours, and can be traced
using the correspondences shown in Table B-1. Generally speaking, important regions can
be scparated from unimportant regions purely on the basis of size. Figure B-2a, for
example, contains four large, important regions. Three of them are directly meaningful
{the door, the wall to the right, and the baseboard), and the fourth is the union of two
important regions (the floor and the wall to the left). An inspection of Figure B3-2b shows
similar resuits. Figure B-2c shows the result of applying the technique to a complicated
scene: while some useful information can be obtained, the resclution available severely

limits the usefulness of the results.

Qur only complete scene-analysis program is oriented toward identifying boxes and
wedges, objects with triangular or rectangular faces, in a simple room environment [18].
For this task, we begin by [itting the boundaries of the major regions by straight lines.
Regions are identified as being part of the floor, walls, baseboards, and faces of objec‘.ts by
such properties as shape. brightness, and position in the picture. Objects are identified by
grouping neighboring faces satisfying some of the simpler criteria used by Guzman [31].

In the process, certain errors caused by incorrect merging are detected and corrected. We
have yet to complete a similar analysis program for the conditions encountered in corridor
scenes. However, we have investigated the problem of obtaining a scene description that

is internally consistent; the next section describes the analysis approach for this problem.

B. A Procedure for Scene Analysis

If we assume temporarily that the merging heuristics have succeeded in the sense that all
of the large regions are meaningful areas, then the only basic problem remaining is the
proper identification of each region. Examination of the corridor pictures indicates the

need to be abie to identify a number of different region types, including the following:

115

Figure 1: THREE CORRIDOR SCENES

118

(ai DOOR

{b) HALL

{c} OFFICE WITH SIGN

TA-8259-20

'f'l’l!!"!"!_‘ﬁ'

TA-B259-21

{c} OFFICE WITH SIGN

yoansaresnaanes,......................-......--.......--.v......E,F....,...... L R TP ERES LY S

#r‘

LT TEI3 TR 1SS Hifn:
xr

b} HALL

T~ . -

L L T L R e e L e et EAd)

{»)} DOOR

sredlEH{fEETIERITET

Figure 2: RESULTS OF MERGING HEURISTICS

117

CONFIGURATION CHARACTER CONFIGURATION CHARACTER

< T I

BRI R L
t
DOAOEEEM

O >» A

Ta-8259-24

Table 1: CORRESPONDENCE BETWEEN BOUNDARY SEGMENT
CONFIGURATIONS AND CHARACTERS USED IN PRINTOUT

118

(1) Floor (8) Sign*

(2) Wall (9) Window

(3) Door (10) Clock

(4) Door jamb (11) Doorknob
(5) Object face (12) Thermostat
(6) Baseboard (13) Power outlet
(7) Baseboard reflection (14) Automaton.

Each of these regions has certain properties which tend to characterize it uniquely. For
example, the floor region is usually large, bright, and near the bottom of the picture.
However, most regions can be identified with greater confidence if the nature of their
neighbors is considered as well. Thus, the presence of a baseboard or baseboard reflection
at the top of a region almost guarantees that the region is the floor; conversely, the
presence of wall area immediately above a region guarantees that it can not be a
baseboard reflection. If regions are identified without regard to how that choice affects
the overall scene description, the chance for error is increased. Moreover, the resulting

description can be nonsensical.

Many, though by no means all, of the relations between types of regions relate to
ncighboring regions. Table B-2 indicates those types of regions that can and cannot be
legal neighbors. We can easily add to this further restrictions, such as the fact that the
baseboard must have the wall as a neighbor along its top edge. These are some of the
important known facts about the general nature of the automaton's environment. The

problem is to use facts such as these to aid in the analysis of the scene.

One approach to solving this problem is to use these facts as constraints to eliminate
impossible choices. Suppose that each significantly large region in the picture is
tentatively classified on the basis of the attributes of that region alone. Suppose further
that a score is computed for each region that measures the degree to which it resembles
each region type.** For any selection of names for regions, we can define the score for the

resulting description as the sum of the individual scores. Then, we can analyze the scene

*By "sign” we mean a dark vertical bar.on the wall used, as illustrated in Figure B-1¢, to identify
an office.)

**This score might be interpreted as the logarithm of the probability that the given region is of
the indicated type.

119

NOLYHNOLNY
13UN0 HIMOJ
1v1S0WY3INL
BONNHOOO
%207

MOONIM

NDIS

NGILD 343
ayvon3Isva

ouHY083SvYE
20v4 1080

SNVFE HOOO
wooa
TIVMR

Hoo1d

+

+ 4|+ +

+ie]+ +

+

+{+[+[+][+]+

+

+ 4|+ +

++]+ +]+

+

g I ey ey g R
(e +|F]+]+

AR AR ARIR IR IR AR 2

- FLOCR

WALL

OCOR

OOOR JamB

OBJECT FACE

BASEBOARD

REFLECTION

BASEBQARD
SIGN

WINDOW
cLoCcK

OQORKNOB

THERMOSTAT

POWER OQUTLET

AUTOMATON

TA-B259~25

Table 2: REGIONS THAT ARE LEGAL NEIGHBORS

120

by trying to find highest scoring legal selection of region names. With no loss in
cenerality and some gain in convenience, we can work with the losses incurred by selecting
other than the highest scoring choice. In terms of losses, we want the legal description

having the smallest overall loss.

This problem is basically a tree-searching problem. The start node of the tree

" corresponds to the first region selected for naming. The branches emanating from that
node correspond to the possible choices of names for that region. A path through the tree
corresponds to a unique labeling of the picture. Thus, if there are N possible region
names and R regions, there are potentially NE possible paths through the trec. Each path
passes through R+1 nodes from the start node to the terminal node. Every terminal node
has a loss value, which is the sum of the losses incurred for the choices along the path to
that node. A goal node is a terminal node corresponding to a complete, legal scene

description. We seek the goal node with the smallest overall loss.

This is a standard problem in tree searching, and optimum search procedures are known.
Assume that some choices have been made for some of the regions so that we have a
partiaily expanded tree. Using the Hart-Nilsson-Raphael terminology [32], some of the
terminal nodes of this tree are open nodes, candidates for further expansion. Each open
node has an associated loss g, the sum of the losses from the start node to that node. If
we assume that there is no reason to believe that zero-loss choices cannot be made from
that node on, then the optimal search strategy is to expand that open node having the

minimum g.

To expand a node, we must select a region not previously considered and examine the
possible choice for that region, ruling out any choices that are not legal. DifTerent
strategies can be used for selecting the next region. It seems advantageous to ask it to be
a neighbor of the regions selected previously, since this maximizes the chance of detecting
illegalities. In general, we will have several neighbors for candidate successors. Of these,
it seems reasonable to select the one having the highest score, under the assumption that

the first choice name for this region is most likely to be correct.

After a region has been selected, it is necessary to examine the choices one can make for
its name to see which ones are legal. If we limit ourselves to pairwise relations between

neighboring regions, we need merely compare each choice with previously made choices on

121

the path to this point and test each for legality.* The node expanded is removed from the
list of open nodes, the resulting new nodes are added, and the process is repeated until the
algorithm selects a goal node for further expansion. This is our final result, a legal scene

description having the minimum loss.

C. Examples

The following examples serve to illustrate the action of this scene-analysis procedure.
Consider first the simple scene shown in Figure B-3. For simplicity, we assume that there
are only five types of allowed regions—floor, wall, door, baseboard, and sign. Consider
Region 1. On the basis of its brightness, size, vertical right boundary, and possession of a
hole, it should receive a high score as wall, and lower scores as floor, door, sign, and
baseboard, Region 2 might, perhaps, score highest as a door, and so on. Thus, the
following table of scores, although purely imaginary, is not unreasonable. Missing entries

correspond to scores too low to be seriously considered.

Type Base-
Repion Floor Wall Door board Sign
1 5 < 2
2 7 1 5
3 3 3 5 1

*When ao illegality is found, that choice is deleted. One can argue that few relations are so
strong as to be absolutely illegal, and an alterpative approach would be to introduce various
additional fosses for the different observed relations.

122

The following table gives equivalent information in terms of the losses associated with

each choice.

Type Base- Max
Region Floor Wall Door board Sign Score
1 1 0 4 6
2 0 6 2 7
3 2 2 0 4 5

Let us use our tree-searching algorithm to obtain the minimum-loss, legal description of
this scene. Initially the successor function is unconstrained by neighbor restrictions, and
selects Region 2 merely because it has the highest score. At this point, all of the choices
for Region 2 are legal, and the tree has three open nodes; the numbers shown next to each

node give the loss accumulated in reaching that part of the tree.

The search algorithm requires that the open node having the least loss be expanded next,
which corresponds to tentatively calling Region 2 a door. The successor function finds
only one neighbor to c‘hoose from, Region 1, and considers its alternatives: wall, floor,
and door, None of these choices is a legal neighbor surrounding Region 1, and hence all
are rejected. Thus, this open node has no successors.

123

TA-B259-26

Figure 3: A SIMPLE SCENE

124

Returping to the choices for open nodes, Region 2 is tentatively called a sign. The
successor function again selects Region 1, and this time finds one legal successor, the
wall.* The loss associated with this choice is 0, and the overall loss is 2. The list of open

nodes still contains two members.

The search algorithm selects the open node with loss 2, and the successor function has

only Region 3 to select from. All of the choices for Region 3 are all legal with respect to

*Note that our successor function will always produce a tree with R+1 levels. At any level, the
same region will always be selected by the successor function. The actual successors, however,
will be limited by the legality requirement.

125

calling Region 2 a sign and Region 1 a wall. The least loss results from calling Region 3 a

door, and the scene analysis is completed.

Baseboard

A somewhat more realistic example involving 10 regions and 14 region types is illustrated
in Figure B-4. Table B-3 gives the hypothetical scores. Based on these scores alone, half
of the regions would be incorrectly identified. Figure B-5 shows the tree produced by the
search algorithm. The development of this tree is too complicated to describe in detail. It
should be noted, however, that considerable backtracking occurred because a low-scoring
third choice was needed for Region 8, the doorknob. Whether or not this can be

circumvented without causing other problems is not known.

D. Remarks

To date. this procedure has only been used on some hypotheticzl examples. We have
modified a general tree-searching program to adapt it to some special characteristics of
this problem. However, we have not started the important task of writing programs to
measure characteristics of regions and to use these characteristics to produce recognition

scores.

In addition, we have not implemented any legality conditions beyond the simple conditions
given in Table B-2.

126

TA-8259-27

Figure 4: A MORE COMPLICATED SCENE

127

TYPE

REGION

FLOOR
WALL
DOOR
DOOR JAMB

OBJECT FACE

BASEBOARD

BASEBOARD
REFLECTION

SIGN

WINDOW

CLOCK
COORKNOB
THERMOSTAT
POWER OQUTLET

AUTOMATON

1

TA-82%55-29

Table 3: HYPOTHETICAL REGION SCORES

128

L] B

W F D Wa W F D ba]

o @p° Q> R’ apre Gls® a* a4

a\eAn 5/ a\8R 5/ B\BRA s/p\an s5/B\en sS/B\BR 5/ 8 \BR
6 . 14
é o':o ORR .:..:. .:..;. .z..:. RBR
21 2-1 2-1 2-1 2.t 21 23 241 2-1 21 2+1 21 2-1 2-1 2= 21 29} 21
§———
PRUNED hd SEQUENCE
NODE NUMBER
2.3
REGION
NUMBER
REGIONS IN
CONFLICT

10-1 10-3 10-8 10-3 103 10-3 10-3 10-810-3 10-2
TA-S2E0-2I1

Figure 5: THE ANALYSIS TREE

129

This approach to scene analysis has several potential advantages. It is not necessary to
identify every region correctly at the outset to obtain a corrcet analysis, provided that the
“syntactic’ rules are sufficiently complete. By providing a limit on the allowable loss, a
partial scene description can be obtained that may be useful even though incomplete.
Perhaps most important, the operations of merging, feature cxtraction, classification, and
analysis are clearly separated, allowing fairly independent modification and improvement.
In particular, the general knowledge about the environment can be expressed explicitly as
rules for legal scenes, and il the environment is changed it is possible to confine the

program changes to modiflying these rules.

One of the major problems with this approach is the lack of an obvious way to detect
erroncous regions, regions that are fragments of or combinations of meaningful regions.
We are currently working on this problem, since progress toward its solution i3 needed
before implcmentation of this system can be begun. Another problem is that it is not
clear how specilic information contained in the model can be used to guide the analysis.
This problem of working in a world that is neither completely known nor completely

unknown is one of the major unsolved problems in visual scene analysis.
III. Landmark Identification

When the environment is completely known, the visual system can provide feedback to
update the automaton's position and orientation. The x-y location of the automaton and
its orientation 6 can be determined uniquely from a picture of a known point and line
lying in the floor.* Such distinguished points and lines serve as landmarks for the
automaton. This section describes our present program that uses concave corners, convex

corners, and doorways as landmarks to update position and orientation.

A lowchart outlining the basic operations of this program is shown in Figure B-8. The
program begins by selecting a landmark from the model that should be visible from the
automaton's present position; if more than one candidate exists, one is selected on the

basis of range and the amount of panning of the camera required.* The camera is then

panned and tilted the amount needed to bring the landmark into the center of the field of

*If no landmark is in view, a suitable message is returned together with a suggested vantage point
from which a landmark can be seen. This is one of several “error’’ returns that can be ohtained
from the program. The program can also be asked to select a specmc landmark, or a landmark
different from the ones previously selected.

130

view, and a picture is taken. The baseboard-tracking routine described previously 8] is
used to find the segments of baseboard in the picture and to fit them with long straight

lines.

Exactly what bappens next depends on the landmark type. For a door, the long lice
nearest the center of the picture is selected, and the true image of the landmark is
assumed to be the endpoint of the baseboard segment on that line and nearest the center
of the picture. An additional check is made to see that the gap from that point to the
next segment is long enough to be a passageway. A convex corner viewed from an angle
such that only one side is visible is treated as if it were a door. Otherwise, the
intersection of long lines nearest the center of the picture is assumed to be the true image
of the landmark, and a check is made to see that the baseboard segments near this point
have the right geometrical configuration. The location of the landmark in the picture
gives the information peeded to compute corrections for the automaton's posit.ién and

orientation.

The operation of this program is illustrated in Figure B-7. In this experiment, the
automaton was approximately 7.5 feet away from a wall along which there were four
landmarks, both sides of a doorway, a convex corner, and a concave corner. The pictures
in Figure B-7. show how closely the panning and tilting brought the landmarks to the
center of the pictures. For scenes as clear as these, the program operates very reliably.
Presently, we can use this routine to locate the robot with an accuracy of between 5
percent and 10 percent of the range, and to fix its orientation to within 5 degreces. Since
the errors are random, the accuracy can be improved further by sighting a second
landmark. Further increases in accuracy, if needed, will have to be obtained by

improving the tilt and pan mechanism for the camera.*

*From [28] pages 1-24

131

h J

Concave corner

{

SELECT MOST
CONVENIENT
LANDMARK

FROM MODEL

Y

PAN AND TILT
CAMERA TO
CENTER ON
LANDMARK

Y

TAKE PICTURE,
TRACK BASEBOARD,
AND FIT WITH
LONG LINES

FIND
INTERSECTIDN
OF LONG LINES

NEAREST LANOMARK

TYPE OF
CORNER

CHECK FOR
CONCAVITY

TYPE OF
LANDMARK

BOTH SIDES
VISIBLE ?

CHECK FOR
CONVEXITY

FIND LONG
LINE NEAREST
LANOMARK

¥

FIND TRACK
ON THAT LINE
NEAREST
LANDMARK

v

CHECK FOR
DOOR-WIDTH
GAP IN TRACK

]

UPDATE
POSITION

}

132

TA-8259-22

Figure 8: BASIC FLOWCHART FOR LANDMARK PROGRAM

{s) RIGHT DOOR (b} LEFT DOOR

lel CONVEX CORNER {d} CONCAVE CORNER

TA-8259-23

Figure 7: LANDMARKS

133

(il

[")

4]

5]

REFERENCES

Rosen. Charles A., and Nils J. Nilsson, eds.

Application of Intelligent Automata to Reconnatssance, First

Interim Report, prepared for Rome Air Development Center, Griffiss Air
Force Base, New York, under contract AF 30{602)-4147, SRI Project
5053, Artificial [ntelligence Center, SR] International, Menlo Park,
California (November 1966). NTIS access number 80-817 189.

Rosen, Charles A., and Nils J. Nilsson, eds.

Application of Intelligent Automate to Reconnasssance, Second

Interim Iteport, prepared for Rome Air Development Center, Grifliss Air
Farce Base, New York, under contract AF 30(602)}-4147, SRI Project
5953, Artificial Intelligence Center, SRI International, Menlo Park,
California {March 1967). NTIS access number 80-820 989.

Rosen, Charles A., and Nils J. Nilsson, eds.

Application of Intelligent Automata to Reconnasssance, Third

Interim Repart, prepared for Rome Air Development Center, Grifliss Air
Force Base, New York, under contract AF 30(602)}-4147, SRI Project
5953, December 1967, Artificial Intelligence Center, SRI

International, Menlo Park, California (December 1967). NTIS access
number 80-827 938.

Nilsson, N., B. Raphael, and S. Wahlstrom.

Applicatinn of Intelligent Automnata to Reconnaissance, Fourth

Interim Report, prepared for Rome Air Development Center, Griffiss Air
Force Base, New York, under contract AF 30(602)-4147, SRI Project
5953, Artificial Intelligence Center, SRI International, Menlo Park,
California (May 1968). NTIS access number 80-841 509.

Nilsson, N. J., C. A. Rosen, B. Raphael, G. Forsen, L. Chaitin,

and S. Wahlstrom.

Application of Intelligent Automata to Reconnaissance, Final
Report, prepared lor Rome Air Development Center, Griffiss Air Force
Base, New York, under contract AF 30(602)-4147, SRI Project 5953,
Artificizl Intelligence Center, SRI International, Menlo Park,
California (December 1968). NTIS access number 80-849 872,

135

\¥

(8]

[9]

[10]

Nilsson, Nils J.

Rcscerch on Intelligent Automata, First Interim Report, prepared

for Rome Air Development Center, Griffiss Air Force Base, New York,
under cantract F30602-69-C-0056, (ARPA Order No. 1058, Amendment 1),
SRI Project 7494, Artificial Intelligence Center, SRI International,

Menlo Park, California (February 1969). NTIS access number AD-A140279

Coles, L. S., R. O. Duda, T. D. Garvey, J. H. Munson, B. Raphaeli,

C. A. Rosen, and R. A, Yates,

Application of Intelligent Automata to Reconnaissance, Final
Report, prepared for Rome Air Development Center, Griffiss Air Force
Base, New York, under contract F30602-60-C-0056, [ARPA Order No. 1058,
Amendment 1), SRI Project 7494, Artilicial Intelligence Center,

SRI International, Menlo Park, California (November 1969). NTIS access
number 80-86A 871.

Chaitin, L. J., R. O. Duda, P. A. Johanson, B. Raphael, C. A. Rosen,

and R. A. Yates.

Research and Applications - Artificial Intelligence, Interim

Scientific Report, prepared for the National Aeronautics and Space
Administration, 600 Independence Avenue, S.W., Washington, D.C., under
contract NAS1-2221, (ARPA Order No. 1058, Amendment 1), SRI Project
8259, Artificial Intelligence Center, SRI International, Menlo Park,
California (April 1970}, NTIS access number N73-25173.

Raphael, Bertram.

Research and Applicationas - Artificial Intelligence, Final Report,
prepared for the National Aeronautics and Space Administration, 600
Independence Avenue, S.W., Washington, D.C., under contract NAS1-2221,
(ARPA Order No. 1058, Amendment 1}, SRI Project 8259, Artilicial
Intelligence Center, SRI International, Menlo Park, California

(November 1970). NTIS access number N73-72140.

Raphael, B., L. J. Chaitin, R. Q. Duda, R. E, Fikes, P. E. Hart,

aond N. J. Nilsson.

Research and Applications - Artificial Intelligence, Semiannual

Progress Report, prepared for the National Aeronautics and Space
Administration, 600 [ndependence Avenue, S.W., Washington, D.C., under
contract (NASW-2164, SRI Project 8973; Artificial Intelligence Center,
SRI International, Menlo Park, California (April 1971}. NTIS access
number NT73-22558.

136

[11]

12]

[12)

[14]

[16]

Raphael, B., R. O. Duda, R. E. Fikes, P. E. Hart, N. J.

Nilsson, P. W. Thorndyke and B. M. Wilber.

Rezearch and Applications - Artificial Intelligence, Final Report,

prepared for the Natienal Aeronautics and Space Administration, 600
Independence Avenue, S.W., Washington, D.C., under contract NASW-2164,
SRI Project 8073, Artificial Intelligence Center, SRI International,

Menlo Park, California (December 1971). NTIS access number N73-23279.

Hart, P. E., R. E. Fikes, T. D. Garvey, N. J, Nilsson,

D. Nitzan, J. M. Tenenbaum, and B. M. Wilber.

Artificial Intelligence - Research and Applications, Annual

Technical Report, prepared for the Advanced Research Projects Agency,
Arlington, Virginia, under contract DAHC04-72-C-0008, (ARPA Order No.
1943), SRI Project 1530, Artificial Intelligence Center, SRI

International, Menlo Park, California (December 1972). NTIS access
number AD7 56970.

Munson, John H.
A LISP-FORTRAN-MACRQ Interface for the PDP-10 Computer, Technical
Note 16, Artificial Intelligence Center, SRI International, Menlo
Park, California (November 1969).

Green, C.

“Application of Theorem Proving to Problem Solving,” in

Proceedings of 1st International Joint Con ference on Aréificial
Inteliigence, Washington, D. C., Walker, Donald E., and Lewis

M. Norton {eds.), pp. 219-239 (1969). Also appears in Readings in
Artificial Intelligence, Webber, Bonnie Lyan, and Nils J. Nilsson,

eds., pp. 202-222, Tioga Publishing Company, Palo Alto, California (1981).

Garvey, T. D., and R. E. Kling.

Uszer's Guide to QA8.5 Quesiion-Answering Syatem, Technical Note

15, Artificial Intelligence Center, SRI International, Menlo Park, California
(December 1969).

Brice, C. R., and C. L. Fennema.

Scene Analysis Using Regions, Technical Note 17, Artificial
Intelligence Center, SRI International, Menlo Park, California (April
1970). Also appears in Artificial Intelligence, 1(3), pp. 205-226
(Fall, 1970). '

137

[17] Duda, R. O., and P. E. Hart.
‘Pattern Recognition and Scene Analysis, New York: John Wiley and Sons

(1973).

[18] Fikes. R. E., and N. J. Nilsson.
“STRIPS: A New Approach to the Application of Theorem Proving to
Problem Solving,” Artificial Intelligence, 2(3/4), pp. 189-208 (1971).

{19] Nilsson, Nils I.
Principles of Artificial Intelligence, Tioga Publishing Company,
Palo Alto, California (1980).

[20] Sacerdoti, E. D.
A Structure for Plans and Behavior, New York: Elsevier (1977).

[21] Wilkins, D.
“Domain-independent Planning: Representation and Plan Generation,'
Artificial Intelligence 22, Number 3, pp. 269-301 (April 1984).

¥

[22] Fikes, R. E., P. E. Hart, and N. I. Nilsson.
“Learning and Executing Generalized Robot Plans,” Technical Note 70,
Artificial Intelligence Center, SRI] International, Menlo Park, California
(July 1972). Also appears in Artificial Intelligence, 3(4),
pp- 251-288 (1972).

[22] Ernst, G., and A. Newell.
GPS: A Case Study in Generality and Problem Solving, ACM Monograph
Series, Academic Press, New York (1969).

[24] Fikes, R. E.
Monitored ﬁ'zecut:'on of Robot Plans Produced by STRIPS, Technical
Note 55, Artificial Intelligence Center, SRI International, Menlo
Park, California (April 1971). Also appeared in Proceedings IFIP
Congress 71, Ljubljana, Yugoslavia (August 23-28, 1971).

[26] Film, SHAKEY: Ezperiments in Robot Planning and Learning,

Artificial Intelligence Center, SRI I[nternational, Menlo Park, California
(1972).

138

[26]

27

[28]

[20]

|30]

[32]

Cales, L. Stephen.

“Talking with a Robot in English,"” Proceedings of the
International Jormt Conference on Artificial Intelligence,
Washington, D. C., Walker, Donald E. and Lewis M. Norton (eds.),
pp. 587-596 (1969).

Fredrickson, T. R.
“Closed Loop Stepping Motor Application,” Third International
Fedcration of Automatic Control Congress, London (June 20-25, 1966).

Duda, R. O.

Some Current Techniques for Scene Analysis, Technical Note 46,
Artificial Intelligence Center, SRI International, Menlo Park, California
{October 1970},

Duda, R. O., and P. E. Hart.
LExrperiments in Scene Analysis, Technical Note 20, Artificial
Intelligence Center, SRI International, Menlo Park, California (January 1970).

Duda, 2. O., and P. E. Hart.

A Generalized Hough Trans formation for Detecting Lines in
Pictureg, Technical Note 36, Artificial Intelligence Center, SRI
international, Menio Park, California {August 1970).

Guzman, A.
“Decomposition of a Visual Scene into Three-Dimensional Bodies,”
Proceedings FJCC, pp. 291-304 (December 1968).

Hart. P. E., N. J. Nilsson, and B. Raphael.

“A Formal Basis for the Heuristic Determination of Minimum Cost
Paths.” ICEE Trans, Sys. Sci. Cyb., Vol. SSC-4, pp. 100-107 (July 1968).

139

